K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2017

a) Dex dàng chứng minh \(\Delta BID\infty BHA\left(g-g\right)\Rightarrow\frac{ID}{AH}=\frac{BD}{AB}\)

mà AD là phân giác góc BAC =>\(\frac{BD}{AB}=\frac{CD}{AC}=\frac{BD+CD}{AB+AC}=\frac{BC}{AB+AC}\)

=>\(\frac{DI}{AH}=\frac{BC}{AB+AC}\left(ĐPCM\right)\)

b) cái ý này t chỉ bt dùng cách lớp 9 thôi, nhưng nếu bạn muốn xem lg kiểu lớp 9 thì xem bài 46 nâng cao phát triến toán 9 tập 1 

( mà đề bài sai hay sao ý, phải là =(AB/BD)^2 chứ  nhỉ !!

c)t nghĩ áp dụng câu b 

^_^

17 tháng 12 2018

a, có MD=MA

        BM=CM( M là trung điểm)

\(MA=\frac{BC}{2}\)(đường trung tuyến ứng với cạnh huyền của tam giác ABC

=> MA=MB=MD=MC hay MA+MD=MC+MD=> AD=BC

=> ABCD là hcn ( tính chất 2 đường chéo bằng nhau

17 tháng 12 2018

xét tam giác AID có

H là tr điểm của AI(I đối xứng với A qua H)

M là trung điểm của AD

=> HM là đường trung bình của tam giác AID

=> HM song song với ID hay ID song song với BC

23 tháng 6 2017

Góc ACD bằng 90 độ

Trong tam giác ABC có: 

AB=BC=\(\frac{1}{2}\)AD    ; nên tam giác ABC cân tại B

=>\(\widehat{BAC}\)=\(\widehat{BCA}\)(1)

mà \(\widehat{ABC}\)+\(\widehat{BAC}\)+\(\widehat{BCA}\)=\(^{180^0}\)

                     \(\widehat{BAC}\)+\(\widehat{BCA}\)=\(^{180^0}\)-\(^{90^0}\)

                      \(\widehat{BAC}\)+\(\widehat{BCA}\)=\(^{90^0}\)(2)

  Từ (1) và (2) suy ra:

                       \(\widehat{BAC}\)       =\(\widehat{BCA}\)       =\(^{ }45^0\)