K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABD và ΔAED có 

AB=AE(gt)

\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{BAE}\))

AD chung

Do đó: ΔABD=ΔAED(c-g-c)

Suy ra: BD=ED(hai cạnh tương ứng)

Xét ΔBED có BD=ED(cmt)

nên ΔBED cân tại D(Định nghĩa tam giác cân)

b) Ta có: AB=AE(gt)

nên A nằm trên đường trung trực của BE(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: DB=DE(cmt)

nên D nằm trên đường trung trực của BE(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AD là đường trung trực của BE

hay AD⊥BE tại trung điểm của BE

mà AD cắt BE tại I(gt)

nên AD⊥BE tại I

\(\widehat{AIB}=90^0\)

Vậy: \(\widehat{AIB}=90^0\)

c) Ta có: ΔBDA=ΔEDA(cmt)

nên \(\widehat{BDA}=\widehat{EDA}\)(hai góc tương ứng)

mà tia DA nằm giữa hai tia DE,DB

nên DA là tia phân giác của \(\widehat{BDE}\)(đpcm)

16 tháng 2 2021
 

a) Ta chứng minh được ΔABD = ΔAED (c-g-c)

=> BD = DE=> tam giác BDE cân tại D

b) Do ΔABD = ΔAED nên góc BDI = góc EDI

=> ΔBDI = ΔEDI (c-g-c)

=> góc BID = góc EID = 90 độ

=> góc AID = 90 độ

c) Ta có góc BDI = góc EDI

=> DA là phân giác của góc BDE

  
22 tháng 3 2020

b, BAE cân tại A có AI là đường phân giác => AI  là đường cao => AIB = 90 độ

c, phân giác

a) Xét hai tg ABD và AED có: AE = AB (gt)

góc BAD = góc EAD

AD chung

DO đó tg ADB = tg AED (c.g.c)

=> BD = DE

=> tam giác BDE cân tại D (đcpm)

20 tháng 1 2018

ngay câu đầu tiên mà đã có thể chứng minh hết tất cả những cái còn lại òi

HIỂU ĐC THÌ LÀM ĐC NHÁ

20 tháng 1 2018


29 tháng 4 2018

1/

a/ Ta có AB < BC (5cm < 6cm)

=> \(\widehat{ACB}< \widehat{A}\)(quan hệ giữa góc và cạnh đối diện trong tam giác)

Mà \(\widehat{ACB}=\widehat{ABC}\)(\(\Delta ABC\)cân tại A)

=> \(\widehat{ABC}< \widehat{A}\)

b/ \(\Delta ADB\)và \(\Delta ADC\)có: AB = AC (\(\Delta ABC\)cân tại A)

\(\widehat{BAD}=\widehat{DAC}\)(AD là tia phân giác \(\widehat{BAC}\))

Cạnh AD chung

=> \(\Delta ADB\)\(\Delta ADC\)(c. g. c) (đpcm)

c/ Ta có \(\Delta ABC\)cân tại A

=> Đường cao AD cũng là đường trung tuyến của \(\Delta ABC\)

và G là giao điểm của hai đường trung tuyến AD và BE của \(\Delta ABC\)

=> CF là đường trung tuyến thứ ba của \(\Delta ABC\)

=> F là trung điểm AB (đpcm)

d/ Ta có G là giao điểm của ba đường trung tuyến AD, BE và CF của \(\Delta ABC\)

=> G là trọng tâm \(\Delta ABC\)

và D là trung điểm BC (vì AD là đường trung tuyến của \(\Delta ABC\))

=> \(BD=DC=\frac{BC}{2}=\frac{6}{2}=3\)(cm)

Áp dụng định lý Pitago vào \(\Delta ADB\)vuông tại D, ta có: AD = 4cm (tự tính)

=> \(AG=\frac{2}{3}AD=\frac{2}{3}.4=\frac{8}{3}\)(cm)

Áp dụng định lý Pitago vào \(\Delta ADC\)vuông tại D, ta có:

\(BG=\sqrt{BD^2+GD^2}\)

=> \(BG=\sqrt{3^2+\left(\frac{8}{3}\right)^2}\)

=> \(BG=\sqrt{9+\frac{64}{9}}\)

=> \(BG=\sqrt{\frac{145}{9}}\)

=> BG \(\approx\)4, 01 (cm)

4 tháng 1 2020

E D A C B F I

a) Xét \(\Delta\)BAE và \(\Delta\)DAC có: ^BAE = ^DAC ( đối đỉnh ) ; AD = AB ( gt ) ; AE = AC ( gt )

=> \(\Delta\)BAE = \(\Delta\)DAC ( c.g.c)

=> BE = DC 

b) Tương tự câu a dễ dàng cm đc: \(\Delta\)ADE = \(\Delta\)ABC => ^ADE = ^ABC => DE//BC

=> ^EDI = ^DIC  mà ^EDI = ^BDI  ( DI là phân giác ^BDE ) 

=> ^DIC = ^BDI hay ^DIB = ^IDB => \(\Delta\)BDI cân tại B.

c) Ta có: ^DBC là góc ngoài tại đỉnh B của \(\Delta\)BDI => ^DBC = ^BDI + ^BID  = 2. ^BID  = 2. ^CIF( theo b) (1)

Có: CF là phân giác ^BCA =>^BCF = ^ACF => ^BCA = ^BCF + ^ACF = 2. ^BCF = 2. ^ICF  (2)

Lại có: ^CFD  là góc ngoài của \(\Delta\)FCI  => ^CFD = ^CIF + ^ICF  (3)

Từ (1) ; (2) ; (3) => 2 .^CFD = 2 ^CIF + 2. ^ICF = ^DBC + ^BCA = ^DBC + ^CED  (  ^CED = ^BCA  vì ED //BC )

24 tháng 2 2022

098765432rtyuiorewerio65yuy5t

yyyyyyyyyyyyyyyyyyyyyyy

B C A D E

a)  Trong Tam giác ABC có: \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^o\)(tổng 3 góc của tam giác)

\(\Rightarrow\widehat{ABC}+\widehat{ACB}=180^o-\widehat{BAC}\)

Mà \(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân tại A)

Nên \(\widehat{ABC}=\widehat{ACB}=\frac{180^o-\widehat{BAC}}{2}\)   (1)

Ta có: AD = AE (gt)

Nên tam giác ADE cân tại A

Trong tam giác ADE có: \(\widehat{DAE}+\widehat{ADE}+\widehat{AED}=180^o\)(tổng 3 góc của tam giác)

\(\Rightarrow\widehat{ADE}+\widehat{AED}=180^o-\widehat{DAE}\)

Mà \(\widehat{ADE}=\widehat{AED}\)(tam giác ADE cân tại A)

Nên \(\widehat{ADE}=\widehat{AED}=\frac{180^o-\widehat{DAE}}{2}\)  (2)

Mặt khác \(\widehat{BAC}=\widehat{DAE}\)(2 góc đối đỉnh)        (3)

Từ (1), (2), (3) \(\Rightarrow\widehat{ABC}=\widehat{ACB}=\widehat{BAC}=\widehat{DAE}\)

Mà các góc này ở vị trí so le trong nên DE // BC

b) Xét \(\Delta ABE\)và \(\Delta ACD\)có:

\(AE=AD\left(gt\right)\)

\(\widehat{EAB}=\widehat{DAC}\)(2 góc đối đỉnh)

\(AB=AC\)(tam giác ABC cân tại A)

Do đó \(\Delta ABE=\Delta ACD\left(c.g.c\right)\)

\(\Rightarrow BE=CD\)(2 cạnh tương ứng)