Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
\(\widehat{xAC}=\dfrac{180^0-80^0}{2}=50^0\)
\(\Leftrightarrow\widehat{xAC}=\widehat{ACB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên Ax//BC
Bài 15:
\(\widehat{ABH}+\widehat{A}=90^0\)
\(\widehat{ACK}+\widehat{A}=90^0\)
Do đó: \(\widehat{ABH}=\widehat{ACK}\)
a, Xét tam giác ABM và tam giác CBM có
MB chung
MA = MC (gt)
AB = BC (gt)
=> tam giác ABM = tam giác CBM (c.c.c)
b , Xét tam giác NMC và tam giác EMA có :
Góc NMC = Góc EMA ( 2 góc đối đỉnh )
MN = ME (gt)
MC = MA (gt)
=> tam giác NMC = tam giác EMA (c.g.c)
=> CN = AE ( 2 cạnh t/ứ)
c, Vì tam giác ABC cân tại B ( AB = BC)
Nên Góc A = góc C = 45o
Xét tam giác vuông MEA có :
Góc A + góc E + góc M = 180o
45o+90o+ góc M = 180o
Góc M = 180o-45o-90o
Góc M = 45o
Hay góc AME = 45o
Mà góc CMN = AME (cmt)
=> Góc CMN = 45o
k cho mk nha
a,theo gt ta có tam giác ABC có AB=BC.=>tam giác abc cân tại b=>góc bac=góc bca(tc tam giác cân)
xét Tam giác ABM và Tam giác CBM. có
AB=BC(gt)
góc bac=góc bca(cmt)
ma =mc(gt)
=> Tam giác ABM=Tam giác CBM.(cgc)
b,xét tam giác aem và tam giác cnm có
em=mn(gt)
am=cm(gt)
góc ema= góc cmn(đối đỉnh)
=>tam giác aem =tam giác cnm (cgc)
=>CN=AE(2 cạnh tương ứng)
a) Xét 2 tam giác vuông: tam giác ABH và tam giác ACK có:
AB = AC (gt)
góc A chung
suy ra: tam giác ABH = tam giác ACK (ch-gn)
b) áp dụng định lí tổng 3 góc của tam giác vào tam giác vuông ABH ta có:
góc BAH + góc ABH = 90^0
=> góc ABH = 90^0 - góc BAH
=> góc ABH = 90^0 - 50^0 = 40^0
Tam giác ABC cân tại A => \(\widehat{ABC}=\frac{180^0-\widehat{A}}{2}=65^0\)
=> góc HBC = 25^0
Tương tự: góc KCB = 25^0
suy ra: góc BOC = 130^0