Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tự vẽ hình nhé !
Nối EN, NM, ME. Ta có G là trọng tâm tam giác ABC nên G là giao điểm 3 đường trung tuyến , do đó E, G , C thẳng hàng.(1)
bây giờ chứng minh E,G,D thẳng hàng thì sẽ có C,G,E,D thẳng hàng.
Ta có E là trung điểm AB, N là trung điểm AC suy ra EN là đường trug bình tam giác ABC nên EN =1/2 BC và EN song2 với BC. lại có MC=1/2 BC ( M trug điểm BC)
suy ra EN = CM và EN song2 với CM từ đó ENCM là hình bình hành.
Xét hình bình hành ENCM có D là trung điểm MN suy ra D là trug điểm EC => ED=DC.
Vì G là trọng tâm tam giác ABC nên EG=1/3 EC=2/3ED (vì ED=1/2 EC)
Xét tam gác ENM có ED là trung tuyến , EG=2/3 ED suy ra G là trọng âm tam giác ENM. suy ra EGD thẳng hàng (2)
TỪ 1 và 2 suy ra E,G,D,C thẳng hàng
Gọi I là tâm hình bình hành MBDC, J là tâm hình bình hành MAED. G là giao điểm của AI và EM
Tứ giác MBDC là hình bình hành nên BI = IC và MI = ID
Tứ giác MAED là hình bình hành nên AJ = JD
∆AMD có AI và MJ là hai đường trung tuyến cắt nhau tại G nên G là trọng tâm của ∆AMD => AG = 2/3AI
∆ABC có AI là đường trung tuyến và AG = 2/3AI nên G là trọng tâm của ∆ABC => G là điểm cố định
Vậy đường thẳng ME luôn đi qua một điểm cố định G (đpcm)
a: OM//AH
ON//BH
MN//AB
=>góc BAH=góc OMN và góc ABH=góc ONM
=>ΔABH đồng dạng vơi ΔMNO
b: G là trọng tâm của ΔABC
=>GM/GA=1/2
ΔABH đồng dạng với ΔMNO nên OM/AH=MN/AB=1/2
=>OM/AH=MG/AG
=>ΔHAG đồng dạng với ΔOMG
c: ΔHAG đồng dạng với ΔOMG
=>góc AGH=góc OGM và GH/GO=GA/GM=2
=>H,G,O thẳng hàng và GH=2GO
A B C I G N M
Gọi giao điểm của BG với AC là M ;
CG với AB là N
Vì G là trọng tâm của \(\Delta ABC\)
nên BM, CN, là trung tuyến
Mặt khác \(\Delta ABC\) cân tại A
Nên BM = CN
Ta có : \(GB=\frac{1}{2}BM;GC=\frac{2}{3}CN\) (t/c trọng tâm của tam giác)
Mà BM = CN nên GB = GC
Do đó : \(\Delta AGB=\Delta AGC\left(c.c.c\right)\)
\(\Rightarrow\widehat{BAG}=\widehat{CAG}\Rightarrow G\) thuộc phân giác của \(\widehat{BAC}\)
Mà \(\Delta ABI=\Delta ACI\left(c.c.c\right)\)
\(\Rightarrow\widehat{BAI}=\widehat{CAI}\Rightarrow I\) thuộc phân giác của \(\widehat{BAC}\)
Vì G, I cùng thuộc phân giác của \(\widehat{BAC}\) nên A, G, I thẳng hàng
Chúc bạn học tốt !!!