K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔBEM vuông tại E và ΔCFM vuông tại F có

MB=MC(M là trung điểm của BC)

\(\widehat{BME}=\widehat{CMF}\)(hai góc đối đỉnh)

Do đó: ΔBEM=ΔCFM(cạnh huyền-góc nhọn)

b) Ta có: ΔBEM=ΔCFM(cmt)

nên BE=CF(hai cạnh tương ứng)

c) Xét ΔBMF và ΔCME có

MB=MC(M là trung điểm của BC)

\(\widehat{BMF}=\widehat{CME}\)(hai góc đối đỉnh)

MF=ME(ΔCFM=ΔBEM)

Do đó: ΔBMF=ΔCME(c-g-c)

\(\widehat{BFM}=\widehat{CEM}\)(hai góc tương ứng)

mà \(\widehat{BFM}\) và \(\widehat{CEM}\) là hai góc ở vị trí so le trong

nên BF//CE(Dấu hiệu nhận biết hai đường thẳng song song)

18 tháng 12 2014

kệ nó sựa lại đi :))

 

11 tháng 2 2019

c, xét tam giác BEM và tam giác AFM có:

BE=AF(câu b)

BM=AM(do AM là trung tuyến của tam giác cân)

góc EBM =góc MAF(cùng phụ với góc ADM= góc BDE)

suy ra 2 tam giác trên bằng nhau

suy ra góc EMB= góc AMF( 2 góc tương ứng)

mặt khác: góc AMF+góc FMB=90 độ (câu a)

suy ra góc EMB+ góc FMB=90 độ

hay FM vuông góc với ME

hay tam giác EMF vuông tại M

 chị làm đó rồi nhé

11 tháng 2 2019

a, Xét tam giác AMB và tam giác AMC có:

AM chung

AB=AC(gt)

BM=CM(gt)

suy ra tam giác AMB= tam giác AMC(c.c.c)

suy ra góc AMB= góc AMC

suy ra góc AMB=góc AMC=180 độ/2=90 độ

hay AM vuông góc với BC

12 tháng 7 2016

a./ \(\Delta BEM=\Delta CFM\)vì:

  • góc BEM = góc CFM ( = 90o )
  • góc EBM = góc FCM (2 góc bằng nhau của tam giác cân ABC tại A)
  • => góc EMB = góc FMC ( = 180o - 2 góc bằng nhau)
  • MB = MC (vì AM là trung tuyến).

b./ => ME = MF (cạnh tương ứng của 2 tam giác bằng nhau) => M nằm trên trung trực của EF (vì cách đều 2 đầu của EF) (1)

\(\Delta BEM=\Delta CFM\)=> BE = CF => AE = AF ( vì cùng bằng AB - BE = AC - CF)

=> A nằm trên trung trực của EF (vì cách đều 2 đầu của EF) (2)

Từ (1) (2) => AM là trung trực của EF.

a: Xét ΔEMB vuông tại E và ΔFMC vuông tại F có

MB=MC

\(\widehat{EMB}=\widehat{FMC}\)

Do đó: ΔEMB=ΔFMC

Suy ra: BE=CF

b: Xét tứ giác BECF có 

BE//CF
BE=CF
Do đó; BECF là hình bình hành

Suy ra: BF//CE

26 tháng 2 2015

a/ Xét tam giác BEM và tam giác CMF có:

góc BEM = góc CFM = 900

BM = MC (M là trung điểm của BC)

góc BME = góc CMF (đối đỉnh)

Do đó:  tam giác BEM = tam giác CMF (cạnh huyền - góc nhọn)

Vậy: tam giác BEM = tam giác CMF.

b/ Ta có:

BE vuông góc với AM, CF vuông góc với AM => BE// CF

Vậy: BE//CF

c/ Ta có:

tam giác BEM = tam giác CMF (cmt) =>ME = MF

=> M là trung điểm của EF 

Vậy: M là trung điểm của EF

(mấy kí hiệu bạn tự viết nha)

 

 

9 tháng 5 2017

A E B C F I M D

a) Xét tam giác BEM và tam giácCFM

có:BM=MC(gt)

     góc EBM=gócFCM(tam giác ABC can^)
->T/g BEM=t/g CFM(c.huyền g. nhon)

b)

Xét tam giác vg AEM va t/g vg AFM

có:EM=MF(t/g BEM=t/gAFM)

    AM là cạnh chung

->t/g AEM =t/g AFM( c/ huyền -c.góc vg)

->AE=AF(2 cạnh tương ứng)

Xét tam giác AEI và t/g AFI 

có:MF=EM(t/g BEM= t/g CFM)

    AM là cạnh chung

    AF=AE(C/ m trên)

->t/g AEI =t/g AFI(c-c-c)

->EI = IF(2 cạnh tương ứng)

->góc AIE= góc AIF(2 tương ứng)

=>AE là đường trung trực của EF

c(mik ko pt lm) 

3 tháng 5 2018

a và b bạn Hương Sơn 

c) Ta có: 

\(\Delta ABC\)cân

có AM là đường trung tuyến 

=> AM cũng  là đường trung trực

=> \(AM\perp BC\)

=> AM = 90 độ

Vì \(\Delta ABC\)cân 

=> Góc ABM = góc ACM          (1)

mà Góc ABD = góc ACD = 90 độ            (2)

Từ (1) và (2) => Góc MBD = góc MCD 

Xét \(\Delta DMB\)và \(\Delta DMC\)có :

DM : cạnh chung     (1)

Góc MBD = góc MCD ( chứng minh trên )            (2)

BM = MC ( vì AM là đường trung tuyến của tam giác ABC )                  (3)

Từ (1) ; (2) và (3) => \(\Delta DMB=\Delta DMC\)(cạnh - góc - cạnh)

=> Góc CMD = góc BMD ( cặp góc tương ứng)

Mà Góc CMD + góc BMD = 180 độ

=> Góc CMD = BMD = 180 : 2 = 90 độ

Vì Góc AMC = 90 độ ( vì AM là đường trung trực)

và  góc CMD = 90 độ

=> AMC + CMD = AMD

=> 90 + 90 = AMD 

=> AMD = 180 độ

=>   Ba điểm A ; M ; D thẳng hàng. ( điều phải chứng minh)

Chúc bạn học tốt !

5 tháng 3 2023

loading...

5 tháng 3 2023

loading...