K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi giao điểm của BM với AC; CM với AD lần lượt là D và E

Xét ΔEBC vuông tại E và ΔDCB vuông tại D có

BC chung

\(\widehat{EBC}=\widehat{DCB}\)

Do đó;ΔEBC=ΔDCB

Suy ra: \(\widehat{MCB}=\widehat{MBC}\)

hay ΔMBC cân tại M

=>\(\widehat{MBC}=\dfrac{180^0-140^0}{2}=20^0\)

=>\(\widehat{ACB}=\widehat{ABC}=70^0\)

hay \(\widehat{BAC}=40^0\)

5 tháng 7 2018

Để tính góc AMB, ta cần tính ∠A1, ∠B1

Trong tam giác vuông AHB có ∠A1= 90o − ∠(ABH) = 90o − 67 o = 23 o

Trong tam giác vuông AKB có ∠B1= 90o − ∠(BAK) = 90 o − 55o = 35o

Vậy trong tam giác AMB có

∠(AMB) = 180o − (∠A1+ ∠B1) = 180o − (23o + 35o) = 122o.

25 tháng 5 2017

A B C M A1 B1

b,

Trong \(\Delta\) AMB có:

\(\widehat{BAM}+\widehat{AMB}+\widehat{MBA}=180^0\)

\(\Rightarrow\widehat{BAM}+\widehat{ABM}=44^0\)

Hay \(\dfrac{1}{2}\left(\widehat{BAC}+\widehat{ABC}\right)=44^0\)

=> \(\widehat{BAC}+\widehat{ABC}=88^0\)

Trong \(\Delta ABC\) có:

\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)

\(\Rightarrow\widehat{ACB}=92^0\)

Ta lại có: hai đường phân giác \(\text{AA}_1\)\(BB_1\) cắt nhau tại M => M là giao của 3 đường phân giác

=> CM là phân của của \(\widehat{C}\)

=> \(\widehat{BCM}=\widehat{MCA}=\dfrac{1}{2}\widehat{C}=\dfrac{1}{2}.92^0=46^0\)

b,

Tương tự câu a, ta tìm được:

\(\widehat{ACM}=\widehat{BCM}=21^0\)

10 tháng 11 2016

em gửi bài qua fb thầy HD cho, tìm fb của thầy bằng sđt: 0975705122, ở đây thầy không vẽ hình được

23 tháng 12 2019

a ) Xét \(\Delta\)ABM và \(\Delta\)ACM có :

  • AB = AC ( \(\Delta\)ABC cân tại A )
  • AM : cạnh chung
  • BÂM = CÂM ( vì AM là phân giác của BÂC )

\(\Rightarrow\)\(\Delta\)ABM = \(\Delta\)ACM ( c - g - c )

b ) Xét \(\Delta\)AHM và \(\Delta\)AKM có :

  • AM : cạnh chung
  • Góc AHM = Góc AKM ( = 90° )
  • HÂM = KÂM ( vì AM là phân giác của BÂC )

\(\Rightarrow\)\(\Delta\)AHM = \(\Delta\)AKM ( cạnh huyền - góc nhọn )

\(\Rightarrow\)AH = AK ( 2 cạnh tương ứng )

c ) Gọi O là giao điểm của AM và HK

Xét \(\Delta\)AOH và \(\Delta\)AOK có :

  • AO : cạnh chung
  • AH = AK ( cmt )
  • HÂO = KÂO ( vì AM là phân giác của BÂC )

\(\Rightarrow\)\(\Delta\)AOH = \(\Delta\)AOK ( c - g - c )

\(\Rightarrow\)AÔH = AÔK ( 2 góc tương ứng )

Mà AÔH + AÔK = 180° ( kề bù )

\(\Rightarrow\)AÔH = ÔK = 180° / 2 = 90° 

Hay AM \(\perp\)HK