K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2018

Phùng Khánh Linh,Akai Haruma, Hung nguyen, Nguyễn Thanh Hằng Giúp mình với!

23 tháng 7 2018

cậu ơi! tớ là ng` mới tham gia_cậu cho tớ hỏi cách gõ phân số kiểu j đc k ??

28 tháng 10 2022

a: Xét ΔAHE vuông tại E và ΔBHD vuông tại D có

góc AHE=góc BHD

Do đó: ΔAHE đồng dạng với ΔBHD

=>HA/HB=HE/HD

hay HA*HD=HB*HE

Xét ΔHAF vuông tại F và ΔHCD vuông tại D có

góc AHF=góc CHD

DO đó; ΔHAF đồng dạng với ΔHCD
=>HA/HC=HF/HD

hay HA*HD=HC*HF=BH*HE

b: Xét tứ giác BFHD có góc BFH+góc BDH=180 độ

nênBFHD là tứ giác nội tiếp

=>góc FDH=góc ABE

Xét tứ giác HECD có góc HEC+góc HDC=180 độ

nên HECD là tứ giác nội tiếp

=>góc EDH=góc ACF

=>góc FDH=góc EDH

=>DH là phân giác của góc FDE

25 tháng 5 2021

Bạn tự vẽ hình nhá

a,

CF , BE là các đường cao của tam giác ABC

=> CF vuông góc vs AB và BE vg với AC

=> Góc CFA = 90 độ và góc BEA = 90 độ

Xét tam giác ACF và tam giác ABE có :

Góc CAB chung

Góc CFA = góc BEA = 90 độ

=> Tam giác ACF đồng dạng vs tam giác ABE

=> AC / AB = AF / AE

<=> AC . AE = AF . AB ( đpcm)

b,

Chứng minh tứ giác CDHE nội tiếp ( tổng 2 góc đối = 180 độ )        

=> Góc ECH = góc EDH ( 2 góc nt cùng chắn cung EH của đtr ngoại tiếp tg CDHE )           ( 1 )

C/m tứ giác DHFB nt ( tổng 2 góc đối = 180 độ ) 

=> Góc HDF = góc HBF ( 2 góc nt cùng chắn cung HF của đtr ngoại tiếp tg DHFB )             ( 2 )

Lại có : Tam giác ACF đồng dạng với tam giác ABE ( cmt )

=> Góc ACF  = góc ABE

Hay góc ECH = góc HBF       ( 3 )

Từ ( 1 ) , ( 2 ) , ( 3 ) => Góc EDH = góc FDH  

Chứng tỏ DH là phân giác góc EDF ( đpcm)

c,

Chưa nghĩ đc

31 tháng 5 2018

Ảnh đây

31 tháng 5 2018

Sao tải ảnh mà tự nhiên lại không được

6 tháng 7 2016

a. Ta có : \(\frac{S_{AEF}}{S_{ABE}}=\frac{AF}{AB};\frac{S_{AEB}}{S_{ABC}}=\frac{AE}{AC}\)

Như vậy \(\frac{S_{AEF}}{S_{ABC}}=\frac{AF}{AB}.\frac{AE}{AC}=\frac{AE}{AB}.\frac{AF}{AC}=cosA.cosA=cos^2A.\)

Từ đó ta có : \(S_{AEF}=S_{ABC}.cos^2A\)

b. Tương tự phần a ta có : \(S_{BEF}=S_{ABC}.cos^2B\)\(S_{CEF}=S_{ABC}.cos^2C\)

Như vậy \(S_{DEF}=S_{ABC}-S_{AEF}-S_{BEF}-S_{CEF}\)

Từ đó ta có: \(\frac{S_{DEF}}{S_{ABC}}=1-\left(cos^2A+cos^2B+cos^2C\right)\)

Chúc em học tốt :)))

6 tháng 7 2016

minh k bit

a: Xét ΔAHB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

hay AE/AC=AF/AB

Xét ΔAEF vuông tại A và ΔACB vuông tại A có

AE/AC=AF/AB

Do đó: ΔAEF đồng dạng với ΔACB

c: \(\dfrac{BE}{CF}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{AC}=\dfrac{BH^2}{CH^2}\cdot\dfrac{AC}{AB}=\dfrac{AB^4}{AC^4}\cdot\dfrac{AC}{AB}=\dfrac{AB^3}{AC^3}\)

15 tháng 10 2019

H F D E A B C

a) \(\widehat{BFC}=\widehat{BEC}=90o\) => tứ giác BFEC nội tiếp => \(\widehat{AEF}=\widehat{ABC;}\widehat{AFE}=\widehat{ABC}\)=> \(\Delta AEF~\Delta ABC\)

SAEF = \(\frac{1}{2}AE.AF.sinA\); SABC = \(\frac{1}{2}AB.AC.sinA\)=>\(\frac{S_{AEF}}{S_{ABC}}=\frac{AE.AF}{AB.AC}\)=cos2A   (cosA = \(\frac{AE}{AB}=\frac{AF}{AC}\))

b) làm tương tự câu a ta được SBFD=cos2B.SABC; SCED=cos2C.SABC

=> SDEF =SABC-SAEF-SBFD-SCED = (1-cos2A-cos2B-cos2C)SABC