K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2024

loading...    

a) ∆ABC vuông tại A (gt)

⇒ ∠ABC + ∠BCA = 90⁰ (hai góc nhọn trong tam giác vuông phụ nhau)

b) Do CE là đường phân giác của ∆ABC (gt)

⇒ CE là tia phân giác của ∠ACB

⇒ ∠ACE = ∠BCE

⇒ ∠ACE = ∠HCE

Xét hai tam giác vuông: ∆ACE và ∆HCE có:

CE là cạnh chung

∠ACE = ∠HCE (cmt)

⇒ ∆ACE = ∆HCE (cạnh huyền - góc nhọn)

⇒ AC = HC (hai cạnh tương ứng)

c) Do ∆ACE = ∆HCE (cmt)

⇒ AE = HE (hai cạnh tương ứng)

⇒ E nằm trên đường trung trực của AH (1)

Do AC = HC (cmt)

⇒ C nằm trên đường trung trực của AH (2)

Từ (1) và (2) ⇒ CE là đường trung trực của AH

Mà I là giao điểm của AH và CE (gt)

⇒ I là trung điểm của AH

⇒ IA = IH

d) Trên tia đối của tia MA lấy điểm D sao cho AM = DM

⇒ M là trung điểm của AD

Do M là trung điểm của BC (gt)

⇒ BM = CM

Xét ∆ABM và ∆DCM có:

AM = DM

∠AMB = ∠DMC (đối đỉnh)

BM = CM (cmt)

⇒ ∆ABM = ∆DCM (c-g-c)

⇒ ∠BAM = ∠CDM (hai góc tương ứng)

Mà ∠BAM và ∠CDM là hai góc so le trong

⇒ AB // CD

Mà AB ⊥ AC (∆ABC vuông tại A)

⇒ CD ⊥ AC

Do ∆ABM = ∆DCM (cmt)

⇒ AB = CD (hai cạnh tương ứng)

Xét hai tam giác vuông: ∆ABD và ∆CDB có:

AB = CD (cmt)

DB là cạnh chung

⇒ ∆ABD = ∆CDB (hai cạnh góc vuông)

⇒ AD = BC (hai cạnh tương ứng)

Mà M là trung điểm của AD (cmt)

⇒ AD = 2AM

⇒ BC = 2AM

12 tháng 1 2017
bài toán này cũng dễ mà,nó ra là ... thôi bạn tự là đ
6 tháng 11 2017

Diễn giải:

- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.

Ví dụ 1:

Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75

Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9

- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.

  1. Cho tam giác ABC, M là trung điểm của BC . Trên tia đối của tia MA lấy điểm E sao choME= MA. Chứng minh rằng: a) AC = EB và AC // Beb) gọi I là một trên AC; K là một điểm trên EB sao choAI= EK. Chứng minh ba điểm I, M, K thẳng hàngc) Từ E kẻ EH vuông góc BC ( H thuộc BC ) Biết góc HBE= 50 độ; MEB = 25 độ. Tính góc HẺM và BME2) Cho tam giác ABC có góc B và góc C nhỏ hơn 90 độ. Vẽ ra phía ngoài tam giác ấy...
Đọc tiếp

 

 

1. Cho tam giác ABC, M là trung điểm của BC . Trên tia đối của tia MA lấy điểm E sao choME= MA. Chứng minh rằng: 

a) AC = EB và AC // Be

b) gọi I là một trên AC; K là một điểm trên EB sao choAI= EK. Chứng minh ba điểm I, M, K thẳng hàng

c) Từ E kẻ EH vuông góc BC ( H thuộc BC ) Biết góc HBE= 50 độ; MEB = 25 độ. Tính góc HẺM và BME

2) Cho tam giác ABC có góc B và góc C nhỏ hơn 90 độ. Vẽ ra phía ngoài tam giác ấy các tam giác cân ABD và ACE( trong đó góc ABD và góc ACE đều bằng 90 độ) vẽ DI và EK cùng vuông góc với đường thẳng BC . Chứng minh rằng:

a) BI = CK; EK = HC

b)BC=DI+ EK

3/ Cho tam giác ABC có góc A > 90 độ. Gọi là trung điểm của cạnh BC . Trên tia đối của tia IB lấy điểm D sao cho IB = ID. Nối C với D

a) Chứng minh tam giác AIB = tam giác CID

b) gọi M là trung điểm của BC , N là trung điểm của CD. Chứng minh rằng I là trung điểm của LN

c) Chứng minh góc AIB<góc BIC

d) Tìm điều kiện của tam giác ABCđể AC vuông góc với CD

 

Cần lời giải gấp ạ, mơn nhiều

 

0
Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH...
Đọc tiếp

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?

Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH bằng tam giác MBH, tam giác ACE= tam giác AKE?

Bài 3: Cho tam giác ABC vuông tại C có góc A = 60* và đường phân gác của góc BAC cắt BC tại E. Kẻ EK vuông góc AB tại K (K thuộc AB).  Kẻ BD vuông góc với AE tại D (D thuộc AE). Chứng minh tam giác ACE = tam giác AKE

Bài 4: Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc BC tại H (H thuộc BC). Chứng minh tam giác ABE = tam giác HBE ?

0
30 tháng 1 2019

 cau a phai la tamgiac HBA = tamgiac AMD phai k 

phai thi tu ve hinh :

a, DM | IH (GT) va AH | BH (GT)  ma 2 duong thang DM; BH phan biet 

=> DM // BH (dl)

=> goc MDB + DBH = 180o (tcp)

co tamgiac ADB vuong can tai A do  goc A = 90o (gt) va AD = AB (gt)   

=> goc MDA + goc ABH = 90o  

ma goc MDA + goc DAM = 90o (tc) do tamgiac DMA vuong tai M do DM | IA (gt)

=> goc MAD = goc ABH 

xet tamgiac AMD va tamgiac BHA co : goc DMA = goc ANB = 90o va AD = AB (GT)

=>  tamgiac AMD = tamgiac BHA (ch - gn)

7 tháng 3 2020

b1: tam giác ABC vuông tại A (Gt) => AB^2 + AC^2 = BC^2 (Pytago)

AB = 6; AC = 8

=> 6^2 + 8^2 = BC^2

=> BC^2 = 100

=> BC = 10 do BC > 0

Có M là trung điểm của BC => AM là trung tuyến của tam giác ABC vuông tại A 

=> AM = BC/2

=> AM = 10 : 2 = 5 

b, xét tam giác BEC có : EM là trung tuyến

EM là đường cao

=> tam giác BEC cân tại E (định lí)

bạn ơi bài 2 nx giúp mk vs