Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔKBC và ΔHCB có:
\(\widehat{BKC}=\widehat{CHB}=90\left(gt\right)\)
BC: cạnh chung
\(\widehat{KBC}=\widehat{HCB}\left(gt\right)\)
=> ΔKBC=ΔHCB(ch-gn)
=>BK=HC
b) Có: AB=AK+KB
AC=AH+HC
Mà: AB=AC(gt); BK=HC(gt0
=>AK=AH
=>ΔAKH cân tại A
=>\(\widehat{AKH}=\frac{180-\widehat{A}}{2}\) (1)
Vì ΔABC cân tại A
=>\(\widehat{ABC}=\frac{180-\widehat{A}}{2}\) (2)
Từ (1)(2) suy ra: \(\widehat{AKB}=\widehat{ABC}\) . Mà hai góc này ở vị trí đồng vị
=> KH//BC
Mà \(\widehat{B}=\widehat{C}\left(gt\right)\)
=>BCHK là hình thang cân
a) ta có tam giác ABC cân tại A => hai đường cao BH vafCK cũng bằng nhau
b) ta có tam giác HBC = tam gác KCB
=> BK=CH
mặt khác KH//BC
=> BCHK là hình thang cân
c) góc BAC=40
=> B=C=(180-40):2=70
ta có K+B=180
=> K=H=180-70=110
SABC=\(\frac{AC.BH}{2}\)=\(\frac{AB.CK}{2}\)
=>AC.BH=AB.CK(1)
Vì tam giác ABC có Góc B>A=>Ac>AB(2)(góc vá cạnh đối diện)
Từ 1,2 =>BH<CK