Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
B H C K A x D
Xét \(\Delta ABH\) ta có:
\(\widehat{HAx}=\widehat{ABH}+90^0=2\widehat{B_2}+90^0\)
Ta lại có \(\widehat{HAx}=2\widehat{A_2}.\) Do đó:
\(2\widehat{A_2}=2\widehat{B_2}+90^0\Rightarrow\widehat{A_2}=\widehat{B_2}+45^0\left(1\right)\)
Mặt khác xét \(\Delta ABD\) ta có:
\(\widehat{A_2}=\widehat{B_2}+\widehat{D_1}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra \(\widehat{D_1}=45^0\)
\(\Rightarrow\widehat{ADB}=45^0\)
Xét ΔABH ta có: = + 90 0 = 2 + 90 0 Ta lại có = 2 .
Do đó: 2 = 2 + 90 0 ⇒ = + 45 0 1
Mặt khác xét ΔABD ta có: = + 2 Từ 1 và 2 suy ra = 45 0
⇒ = 45 0
:3
^AHC = 900 và ^AHD = 450 suy ra HD là phân giác ngoại tại đỉnh H của \(\Delta\)ABH
Kết hợp với BD là đường phân giác trong tại đỉnh B suy ra AD là phân giác của ^HAx (2 đường phân giác ngoài và một đường phân giác trong đồng quy)
Ta có: ^HAx = 900 + ^ABH (t/c góc ngoài)
=> \(2\widehat{CAx}=90^0+2\widehat{ABD}\)
=> ^CAx = 450 + ^ABD
Mà ^CAx = ^ADB + ^ABD (t/c góc ngoài) nên suy ra ^ADB = 450
Vậy \(\widehat{ADB}=45^0\)
a) Tam giác ABC cân tại A nên: \(\widehat {ABC} = \widehat {ACB} = 70^\circ \).
Tổng ba góc trong một tam giác bằng 180° nên: \(\widehat {BAC} = 180^\circ - 70^\circ - 70^\circ = 40^\circ \).
b) Xét tam giác vuông ADB và tam giác vuông AEC có:
AB = AC (tam giác ABC cân);
\(\widehat A\) chung.
Vậy \(\Delta ADB = \Delta AEC\)(cạnh huyền – góc nhọn). Suy ra: BD = CE ( 2 cạnh tương ứng).
c) Trong tam giác ABC có H là giao điểm của hai đường cao BD và CE nên H là trực tâm trong tam giác ABC hay AF vuông góc với BC.
Xét hai tam giác vuông AFB và AFC có:
AB = AC (tam giác ABC cân);
AF chung.
Vậy \(\Delta AFB = \Delta AFC\)(cạnh huyền – cạnh góc vuông). Suy ra: \(\widehat {FAB} = \widehat {FAC}\) ( 2 góc tương ứng) hay \(\widehat {BAH} = \widehat {CAH}\).
Vậy tia AH là tia phân giác của góc BAC.
Giải cách lớp 8
Từ D kẻ DE⊥AC(E∈BC)
Xét ΔADBvà ΔEBD
^ADB=^EBD
BD cạnh chung
^ABD=^EBD
⇒ΔABD=ΔEBD(g−c−g)
⇒AD=ED
⇒^DAE=^DEA= 45 độ ( 1 )
Ta thấy : Tứ giác ADEH là tứ giác nội tiếp vì góc AHE + góc ADE = 180 độ ( 2 )
Từ ( 1 ) và ( 2 ) suy ra góc AHD = góc DHE = 90 độ / 2 = 45 độ
⇒^BHD=^DHE( = 45 độ )
⇒HD // AB ( 2 góc so le trong ) ( đpcm )
ve hinh di roi minh lam
minh ve mai cha duoc
bạn làm giúp mình mấy câu hỏi phía dưới lúc nãy mình mới gửi lên trước đi. bài này từ từ cx đc.