Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi N là giao điểm của AD và BC; H là giao điểm của MN và AB
Chứng minh góc AHM= 90; mà góc CAB 45(gt) nên tam giác AHM vuông cân
=>MH = AH
=>MH + HB = AH + HB = 2R (1)
* Tam giác MHB vuông tại H
HB = MB.cos MBH => MB= \(\frac{HB}{sosMBH}\)=\(\frac{HB}{cos60^0}\)=2HB
MH = MB. sin MBH => MH= MB. sin60=\(\frac{MB\sqrt{3}}{2}=HB\sqrt{3}\)
=> \(HB=\frac{MH}{\sqrt{3}}=\frac{\sqrt{3}MH}{3}\) (2)
Từ (1) và (2) ta có \(MH+\frac{\sqrt{3}MH}{3}=2R\Rightarrow MH=\frac{6R}{3+\sqrt{3}}=\left(3-\sqrt{3}\right)R\)
Vậy \(S=\frac{AB.MH}{2}=\frac{1}{2}.2R\left(3-\sqrt{3}\right)R=\left(3-\sqrt{3}\right)R^2\)
cảm ơn bạn, mình còn rất nhiều bt vì mình đang ôn đội tuyển, mong đc các bạn giúp đỡ