K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2016

Bạn tự vẽ hình nha!

a) A + B + C = 180 ĐỘ (tổng 3 góc tam giác ABC)

A + 60 + C = 180

A + C = 180 - 60 = 120

2C + C = 120

3C =120

C = 120 : 3 = 40 => A =80

ta có : góc  C < góc B < góc A (40 < 60 < 80)

Vậy AB < AC < BC (quan hệ giữa góc và cạnh đối diện trong tam giác BC)

b) Xét tam giác BHC vuông tại H 

=> góc HBC + góc C =90 độ

HBC + 40 =90

HBC = 90 - 40 =50

C < HBC (40 < 50) => HB < HC   (1) ( quan hệ giữa góc và cạnh đối diện trong tam giác BHC)     

Ta có :

ABH + HBA = ABC ( tia BH nằm giữa 2 tia BA và BC)

ABH + 50 = 60

ABH = 60 - 50 = 10

ABH < A (10 < 80) nên HA < HB (2)   (quan hệ giữa góc và cạnh đối diện trong tam giác AHB)

Từ (1) và (2), => HA < HC

c)  Tam giác ABM và tam giác CEM có

AM = CM ( đường trung tuyến BM)

góc AMB = góc CMB (2 góc đối đỉnh)

BM = EM (gt)

=> tam giác ABM = tam giác CEM (c.g.c)

=> AB = CE (yếu tố tương ứng) (đpcm)

Xét tam giác BEC , ta có :

BE < BC + CE

2BM < BA + AB ( đpcm) 

5 tháng 3 2018

a/ Ta có: tam giác ABC vuông tại A

góc ABC = 600 => góc ACB = 300

Ta thấy: góc ABC > góc ACB

=> AB < AC

Trong tam giác ABH vuông tại H có:

góc ABC + góc BAH = 900

Mà góc ABC = 600 => góc BAH = 300

Trong tam giác ACH vuông tại H có:

góc ACB + góc CAH = 900

Mà góc ACB = 300 (cmt) => góc CAH = 600

Ta thấy: góc BAH < góc CAH

=> BH < CH

b/ Xét hai tam giác vuông AHC và DHC có:

AH = HD (GT)

CH: cạnh chung

=> tam giác AHC = tam giác DHC

c/ Xét tam giác ABC và tam giác DBC có:

BC: cạnh chung

góc ACB = góc DCB (t/g AHC = t/g DHC)

AC = DC (t/g AHC = t/g DHC)

=> tam giác ABC = tam giác DBC

=> góc BAC = góc BDC = 900

1 tháng 4 2020

cho tam giác ABC vuông tại A lấy M là trung điểm AC trên tia đối tia MB lấy điểm E sao cho ME=MB

a)chứng minh tam giác AMB=tam giác CME

b)chứng minh CE vuông góc với AC

8 tháng 7 2019

A B C M

CM :

a) Áp dụng định lí Pi - ta - go vào t/giác ABC vuông tại A, ta có:

BC2 = AB2 +  AC2

=> AB2 = BC2 - AC2 = 102 - 82 = 100 - 64 = 36

=> AB = 6 (cm)

b) Xét t/giác ABM và t/giác CDM

có: BM = MD (gt)

   \(\widehat{AMB}=\widehat{CMD}\) (đối đỉnh)

  AM = CM (gt)

=> t/giác ABM = t/giác CDM (c.g.c)

=> AB = CD (2 cạnh t/ứng)

=> \(\widehat{A}=\widehat{C}\) (2 góc t/ứng)

Mà \(\widehat{A}=90^0\) => \(\widehat{C}=90^0\) => AC \(\perp\)CD

c) Xét t/giác ACD

 Ta có: BC + CD > BD (bất đẳng thức t/giác)

Mà CD = AB và 2BM = BD (vì BD = BM + MD và BM = MD)

=> AB + BC > 2BM

d) Ta có: AB < BC (6 cm < 10cm)

Mà AB = CD

=> CD > BC =>  \(\widehat{MBC}< \widehat{D}\) (quan hệ giữa cạnh và góc đối diện)

Mà \(\widehat{D}=\widehat{ABM}\) (vì t/giác ABM = t/giác CDM)

=> \(\widehat{CBM}< \widehat{ABM}\)

8 tháng 3 2023

Cho tam giác ABC vuông tại A có AB<AC,đường trung tuyến AM. Trên tia đối của tia AM lấy điểm D sao cho M là trung điểm AD.

a) chứng minh tam giác MAB= tam giác MDC và DC song song với AB

b) gọi K là trung điểm AC. Chứng minh tam giác BKD cân 

c) DK cắt BC tại O. Chứng minh CO=2/3CM

d) BK cắt AD tại N. Chứng minh MK vuông góc với NO

 

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng


Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF


Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE


Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0
23 tháng 3 2016

1.

Ta có : AC<AD (vì : D là tia đối của tia BC )

=> HD<HC

3. 

Ta có : AB+AC>AH (vì : tog 2 cah cua tam giác luôn lớn hơn cah con lại)

Mà : 1/2AH<AB+AC

=> AB+AC>2AH

4.

Ta có : ko hiu

23 tháng 3 2016

bạn giải bài 3 mik hk hiu, bn viết rõ rak dc hk