K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2023

Tham khảo:

a) Áp dụng công thức \(S = \frac{1}{2}ac.\sin B\) cho tam giác ABC và BED, ta có:

\({S_{ABC}} = \frac{1}{2}.BA.BC.\sin B;{S_{BED}} = \frac{1}{2}..BE.BD.\sin B\)

\( \Rightarrow \frac{{{S_{BED}}}}{{{S_{ABC}}}} = \frac{{\frac{1}{2}.BE.BD.\sin B}}{{\frac{1}{2}.BA.BC.\sin B}} = \frac{{BE.BD}}{{BA.BC}}\)

b) Ta có: \(\cos B = \frac{{BD}}{{BA}} = \frac{{BE}}{{BC}}\)

Mà \(\frac{{{S_{BED}}}}{{{S_{ABC}}}} = \frac{1}{9} \Rightarrow \frac{{BD}}{{BA}}.\frac{{BE}}{{BC}} = \frac{1}{9}\)

\( \Rightarrow \cos B = \frac{{BD}}{{BA}} = \frac{{BE}}{{BC}} = \frac{1}{3}\)

+) Xét tam giác ABC và tam giác DEB ta có:

\(\frac{{BE}}{{BC}} = \frac{{BD}}{{BA}} = \frac{1}{3}\) và góc B chung

\( \Rightarrow \Delta ABC \sim \Delta DEB\) (cgc)

\( \Rightarrow \frac{{DE}}{{AC}} = \frac{1}{3} \Rightarrow AC = 3.DE = 3.2\sqrt 2  = 6\sqrt 2 .\)

Ta có: \(\cos B = \frac{1}{3} \Rightarrow \sin B = \sqrt {1 - {{\left( {\frac{1}{3}} \right)}^2}}  = \frac{{2\sqrt 2 }}{3}\) (do B là góc nhọn)

Áp dụng định lí sin trong tam giác ABC ta có:

\(\frac{{AC}}{{\sin B}} = 2R \Rightarrow R = \frac{{6\sqrt 2 }}{{\frac{{2\sqrt 2 }}{3}}}:2 = \frac{9}{2}\)

2 tháng 7 2019

Gọi ( O;R ) , ( I ;r ) lần lượt là các đường tròn ngoại tiếp tam giác ABC, DEF 

Tam giác ABC ~ Tam giác DEF ( vì \(\widehat{ABC}=\widehat{DEF};\widehat{BAC}=\widehat{EDF}\)\(\Rightarrow\widehat{ABC}=\widehat{DEF}\)

\(\widehat{ACB},\widehat{DEF}\)nhọn nên \(\widehat{ACB}=\frac{1}{2}\widehat{AOB};\widehat{DEF}=\frac{1}{2}\widehat{DIE}\)( hệ quả góc nội tiếp )

\(\Rightarrow\widehat{AOB}=\widehat{DIE}\)

     \(OA=OB\left(=R\right)\Rightarrow\Delta OAB\)cân tại O

    \(ID=IE\left(=r\right)\Rightarrow\Delta IDE\)cân tại I

Do đó Tam giác OAB ~ Tam giác IDE \(\Rightarrow\frac{OA}{ID}=\frac{AB}{DE}\Rightarrow\frac{R}{r}=\frac{3DE}{DE}\)

                                                           \(\Rightarrow R=3r\) ( đpcm)

5 tháng 7 2019

Gọi ( O; R ), ( I; R ) lần lượt là các đường tròn ngoại tiếp tam giác ABC, DEF

Tam giác ABC ~ Tam giác DEF ( vì \(\widehat{ABC}=\widehat{DEF;}\widehat{BAC}=\widehat{EDF}\)  ) \(\Rightarrow\widehat{ABC}=\widehat{DEF}\)

\(\widehat{ABC}=\widehat{DEF}\)nhọn nên \(\widehat{ACB}=\frac{1}{2}\widehat{AOB};\widehat{DEF}=\frac{1}{2}\widehat{DIE}\)(hệ quả góc nội tiếp )

\(\Rightarrow\widehat{AOB}=\widehat{DIE}\)

\(OA=OA\left(=R\right)\Rightarrow\Delta OAB\)cân tại O

Do đó Tam giác OAB ~ Tam giác IDE\(\Rightarrow\frac{OA}{ID}=\frac{AB}{DE}\Rightarrow\frac{R}{r}=\frac{3DE}{DE}\)

                                                       \(\Rightarrow R=3r\left(đpcm\right)\)

  Rất vui vì giúp đc bạn <3

NV
29 tháng 1 2021

1.

\(\overrightarrow{AB}=\left(2;-6\right)\Rightarrow AB=2\sqrt{10}\) \(\Rightarrow BC=AB.cosB=\sqrt{10}\)

Gọi \(C\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AC}=\left(x-1;y-2\right)\\\overrightarrow{BC}=\left(x-3;y+4\right)\end{matrix}\right.\)

Tam giác ABC vuông tại C và có \(BC=\sqrt{10}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\overrightarrow{AC}.\overrightarrow{BC}=0\\BC^2=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x-3\right)+\left(y-2\right)\left(y+4\right)=0\\\left(x-3\right)^2+\left(y+4\right)^2=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-4x+2y-5=0\\x^2+y^2-6x+8y+15=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3y-10=0\\x^2+y^2-6x+8y+15=0\end{matrix}\right.\)

\(\Rightarrow\left(3y+10\right)^2+y^2-6\left(3y+10\right)+8y+15=0\)

\(\Leftrightarrow2y^2+10y+11=0\)

\(\Leftrightarrow y=...\)

NV
29 tháng 1 2021

2.

Kẻ \(EF\perp BC\)

\(S_{ABC}=9S_{BDE}\Rightarrow AD.BC=9EF.BD\Rightarrow\dfrac{EF}{AD}=\dfrac{BC}{9BD}\)

Talet: \(\dfrac{EF}{AD}=\dfrac{BF}{BD}=\dfrac{BC}{9BD}\Rightarrow BC=9BF\)

Hệ thức lượng: \(BE^2=BF.BC=9BF^2\Rightarrow BE=3BF\)

\(\Rightarrow cosB=\dfrac{BF}{BE}=\dfrac{1}{3}\)

Gọi R là bán kính đường tròn ngoại tiếp ABC và \(r\) là bán kính đường tròn ngoại tiếp BDE

\(sinB=\sqrt{1-\left(\dfrac{1}{3}\right)^2}=\dfrac{2\sqrt{2}}{3}\)

\(\Rightarrow r=\dfrac{DE}{2sinB}=\dfrac{3}{2}\) (định lý sin tam giác BDE)

Dễ dàng chứng minh 2 tam giác ABC và BDE đồng dạng (chung góc B và \(\widehat{A}=\widehat{BDE}\) vì cùng bù \(\widehat{CDE}\))

Mà \(S_{ABC}=9S_{BDE}\Rightarrow\) 2 tam giác đồng dạng tỉ số \(k=\sqrt{9}=3\)

\(\Rightarrow R=3r=\dfrac{9}{2}\)

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính...
Đọc tiếp

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC

 Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.

Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán kính đường tròn ngoại tiếp ∆MBC.

Bài 13:Cho ABC có 0 0 A B b = = = 60 , 45 , 2 tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp và diện tích tam giác ABC

Bài 14:Cho ABC AC = 7, AB = 5 và 3 cos 5 A = . Tính BC, S, a h , R, r.

Bài 15:Cho ABC có 4, 2 m m b c = = và a =3 tính độ dài cạnh AB, AC.

Bài 16:Cho ABC có AB = 3, AC = 4 và diện tích S = 3 3 . Tính cạnh BC

Bài 17:Cho tam giác ABC có ˆ o A 60 = , c h 2 3 = , R = 6. a) Tính độ dài các cạnh của ∆ABC. b) Họi H là trực tâm tam giác ABC. Tính bán kính đường tròn ngoại tiếp ∆AHC.

Bài 18:a. Cho ABC biết 0 0 a B C = = = 40,6; 36 20', 73 . Tính BAC , cạnh b,c. b.Cho ABC biết a m = 42,4 ; b m = 36,6 ; 0 C = 33 10' . Tính AB, và cạnh c.

Bài 19:Tính bán kính đường tròn nội tiếp ABC biết AB = 2, AC = 3, BC = 4.

Bài 20:Cho ABC biết A B C (4 3; 1 , 0;3 , 8 3;3 − ) ( ) ( ) a. Tính các cạnh và các góc của ABC b. Tính chu vi và diện tích ABC

0
19 tháng 5 2017

Tích vô hướng của hai vectơ và ứng dụng

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Đặt \(A = \dfrac{1}{2}\sqrt {{{\overrightarrow {AB} }^2}.{{\overrightarrow {AC} }^2} - {{\left( {\overrightarrow {AB} .\overrightarrow {AC} } \right)}^2}} \)

\(= \dfrac{1}{2}\sqrt { A{B^2}.A{C^2}- {{\left(|{\overrightarrow {AB}| .|\overrightarrow {AC}|. \cos BAC} \right)}^2}} \)

\(\begin{array}{l} \Rightarrow A = \dfrac{1}{2}\sqrt {A{B^2}.A{C^2} - {{\left( {AB.AC.\cos A} \right)}^2}} \\ \Leftrightarrow A = \dfrac{1}{2}\sqrt {A{B^2}.A{C^2} - A{B^2}.A{C^2}.{{\cos }^2}A }\\ \Leftrightarrow A = \dfrac{1}{2}\sqrt {A{B^2}.A{C^2}\left( {1 - {{\cos }^2}A} \right)} \end{array}\)

Mà \(1 - {\cos ^2}A = {\sin ^2}A\)

\( \Rightarrow A = \dfrac{1}{2}\sqrt {A{B^2}.A{C^2}.{{\sin }^2}A} \)

\( \Leftrightarrow A = \dfrac{1}{2}.AB.AC.\sin A\) (Vì \({0^o} < \widehat A < {180^o}\) nên \(\sin A > 0\))

Do đó \(A = {S_{ABC}}\) hay \({S_{ABC}} = \dfrac{1}{2}\sqrt {{{\overrightarrow {AB} }^2}.{{\overrightarrow {AC} }^2} - {{\left( {\overrightarrow {AB} .\overrightarrow {AC} } \right)}^2}} .\) (đpcm)