Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ( O;R ) , ( I ;r ) lần lượt là các đường tròn ngoại tiếp tam giác ABC, DEF
Tam giác ABC ~ Tam giác DEF ( vì \(\widehat{ABC}=\widehat{DEF};\widehat{BAC}=\widehat{EDF}\)) \(\Rightarrow\widehat{ABC}=\widehat{DEF}\)
\(\widehat{ACB},\widehat{DEF}\)nhọn nên \(\widehat{ACB}=\frac{1}{2}\widehat{AOB};\widehat{DEF}=\frac{1}{2}\widehat{DIE}\)( hệ quả góc nội tiếp )
\(\Rightarrow\widehat{AOB}=\widehat{DIE}\)
\(OA=OB\left(=R\right)\Rightarrow\Delta OAB\)cân tại O
\(ID=IE\left(=r\right)\Rightarrow\Delta IDE\)cân tại I
Do đó Tam giác OAB ~ Tam giác IDE \(\Rightarrow\frac{OA}{ID}=\frac{AB}{DE}\Rightarrow\frac{R}{r}=\frac{3DE}{DE}\)
\(\Rightarrow R=3r\) ( đpcm)
Gọi ( O; R ), ( I; R ) lần lượt là các đường tròn ngoại tiếp tam giác ABC, DEF
Tam giác ABC ~ Tam giác DEF ( vì \(\widehat{ABC}=\widehat{DEF;}\widehat{BAC}=\widehat{EDF}\) ) \(\Rightarrow\widehat{ABC}=\widehat{DEF}\)
\(\widehat{ABC}=\widehat{DEF}\)nhọn nên \(\widehat{ACB}=\frac{1}{2}\widehat{AOB};\widehat{DEF}=\frac{1}{2}\widehat{DIE}\)(hệ quả góc nội tiếp )
\(\Rightarrow\widehat{AOB}=\widehat{DIE}\)
\(OA=OA\left(=R\right)\Rightarrow\Delta OAB\)cân tại O
Do đó Tam giác OAB ~ Tam giác IDE\(\Rightarrow\frac{OA}{ID}=\frac{AB}{DE}\Rightarrow\frac{R}{r}=\frac{3DE}{DE}\)
\(\Rightarrow R=3r\left(đpcm\right)\)
Rất vui vì giúp đc bạn <3
1.
\(\overrightarrow{AB}=\left(2;-6\right)\Rightarrow AB=2\sqrt{10}\) \(\Rightarrow BC=AB.cosB=\sqrt{10}\)
Gọi \(C\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AC}=\left(x-1;y-2\right)\\\overrightarrow{BC}=\left(x-3;y+4\right)\end{matrix}\right.\)
Tam giác ABC vuông tại C và có \(BC=\sqrt{10}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\overrightarrow{AC}.\overrightarrow{BC}=0\\BC^2=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x-3\right)+\left(y-2\right)\left(y+4\right)=0\\\left(x-3\right)^2+\left(y+4\right)^2=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-4x+2y-5=0\\x^2+y^2-6x+8y+15=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3y-10=0\\x^2+y^2-6x+8y+15=0\end{matrix}\right.\)
\(\Rightarrow\left(3y+10\right)^2+y^2-6\left(3y+10\right)+8y+15=0\)
\(\Leftrightarrow2y^2+10y+11=0\)
\(\Leftrightarrow y=...\)
2.
Kẻ \(EF\perp BC\)
\(S_{ABC}=9S_{BDE}\Rightarrow AD.BC=9EF.BD\Rightarrow\dfrac{EF}{AD}=\dfrac{BC}{9BD}\)
Talet: \(\dfrac{EF}{AD}=\dfrac{BF}{BD}=\dfrac{BC}{9BD}\Rightarrow BC=9BF\)
Hệ thức lượng: \(BE^2=BF.BC=9BF^2\Rightarrow BE=3BF\)
\(\Rightarrow cosB=\dfrac{BF}{BE}=\dfrac{1}{3}\)
Gọi R là bán kính đường tròn ngoại tiếp ABC và \(r\) là bán kính đường tròn ngoại tiếp BDE
\(sinB=\sqrt{1-\left(\dfrac{1}{3}\right)^2}=\dfrac{2\sqrt{2}}{3}\)
\(\Rightarrow r=\dfrac{DE}{2sinB}=\dfrac{3}{2}\) (định lý sin tam giác BDE)
Dễ dàng chứng minh 2 tam giác ABC và BDE đồng dạng (chung góc B và \(\widehat{A}=\widehat{BDE}\) vì cùng bù \(\widehat{CDE}\))
Mà \(S_{ABC}=9S_{BDE}\Rightarrow\) 2 tam giác đồng dạng tỉ số \(k=\sqrt{9}=3\)
\(\Rightarrow R=3r=\dfrac{9}{2}\)
Đặt \(A = \dfrac{1}{2}\sqrt {{{\overrightarrow {AB} }^2}.{{\overrightarrow {AC} }^2} - {{\left( {\overrightarrow {AB} .\overrightarrow {AC} } \right)}^2}} \)
\(= \dfrac{1}{2}\sqrt { A{B^2}.A{C^2}- {{\left(|{\overrightarrow {AB}| .|\overrightarrow {AC}|. \cos BAC} \right)}^2}} \)
\(\begin{array}{l} \Rightarrow A = \dfrac{1}{2}\sqrt {A{B^2}.A{C^2} - {{\left( {AB.AC.\cos A} \right)}^2}} \\ \Leftrightarrow A = \dfrac{1}{2}\sqrt {A{B^2}.A{C^2} - A{B^2}.A{C^2}.{{\cos }^2}A }\\ \Leftrightarrow A = \dfrac{1}{2}\sqrt {A{B^2}.A{C^2}\left( {1 - {{\cos }^2}A} \right)} \end{array}\)
Mà \(1 - {\cos ^2}A = {\sin ^2}A\)
\( \Rightarrow A = \dfrac{1}{2}\sqrt {A{B^2}.A{C^2}.{{\sin }^2}A} \)
\( \Leftrightarrow A = \dfrac{1}{2}.AB.AC.\sin A\) (Vì \({0^o} < \widehat A < {180^o}\) nên \(\sin A > 0\))
Do đó \(A = {S_{ABC}}\) hay \({S_{ABC}} = \dfrac{1}{2}\sqrt {{{\overrightarrow {AB} }^2}.{{\overrightarrow {AC} }^2} - {{\left( {\overrightarrow {AB} .\overrightarrow {AC} } \right)}^2}} .\) (đpcm)
Tham khảo:
a) Áp dụng công thức \(S = \frac{1}{2}ac.\sin B\) cho tam giác ABC và BED, ta có:
\({S_{ABC}} = \frac{1}{2}.BA.BC.\sin B;{S_{BED}} = \frac{1}{2}..BE.BD.\sin B\)
\( \Rightarrow \frac{{{S_{BED}}}}{{{S_{ABC}}}} = \frac{{\frac{1}{2}.BE.BD.\sin B}}{{\frac{1}{2}.BA.BC.\sin B}} = \frac{{BE.BD}}{{BA.BC}}\)
b) Ta có: \(\cos B = \frac{{BD}}{{BA}} = \frac{{BE}}{{BC}}\)
Mà \(\frac{{{S_{BED}}}}{{{S_{ABC}}}} = \frac{1}{9} \Rightarrow \frac{{BD}}{{BA}}.\frac{{BE}}{{BC}} = \frac{1}{9}\)
\( \Rightarrow \cos B = \frac{{BD}}{{BA}} = \frac{{BE}}{{BC}} = \frac{1}{3}\)
+) Xét tam giác ABC và tam giác DEB ta có:
\(\frac{{BE}}{{BC}} = \frac{{BD}}{{BA}} = \frac{1}{3}\) và góc B chung
\( \Rightarrow \Delta ABC \sim \Delta DEB\) (cgc)
\( \Rightarrow \frac{{DE}}{{AC}} = \frac{1}{3} \Rightarrow AC = 3.DE = 3.2\sqrt 2 = 6\sqrt 2 .\)
Ta có: \(\cos B = \frac{1}{3} \Rightarrow \sin B = \sqrt {1 - {{\left( {\frac{1}{3}} \right)}^2}} = \frac{{2\sqrt 2 }}{3}\) (do B là góc nhọn)
Áp dụng định lí sin trong tam giác ABC ta có:
\(\frac{{AC}}{{\sin B}} = 2R \Rightarrow R = \frac{{6\sqrt 2 }}{{\frac{{2\sqrt 2 }}{3}}}:2 = \frac{9}{2}\)