K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔABC cân tại A

mà AH là đường trung tuyến

nên AH là phân giác của góc BAC

c: ΔABC cân tại A

mà AH là trung tuyến

nên AH là trung trực của BC

=>I nằm trên trung trực của BC

=>IB=IC

d: Xet ΔABN có góc ABN=góc ANB=góc MBC

nên ΔABN can tại A

=>AB=AN

e: Xét ΔABC co

BM,AM là phân giác

nên M là tâm đừog tròn nội tiếp

=>CM là phân giác của góc ACB

Xét ΔHCM vuông tại H và ΔKCM vuông tại K có

CM chung

góc HCM=góc KCM

=>ΔHCM=ΔKCM

=>MH=MK

3 tháng 12 2015

ai thi ioe lớp 5 vòng 11 hộ mình ko

6 tháng 11 2017

Diễn giải:

- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.

Ví dụ 1:

Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75

Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9

- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.

16 tháng 3 2018

a, Xet tam giac ABH va tam giac ACH co 
        AH chung ,goc B= goc C ;AB=AC
     =>tam giac ABH = tam giac ACH
     =>HB=HC (2 canh tuong ung )
     =>H la trung diem cua BC

17 tháng 3 2018

(Bạn tự vẽ hình giùm)

a/ \(\Delta AHB\)vuông và \(\Delta AHC\)vuông có: AB = AC (\(\Delta ABC\)cân tại A)

Cạnh AH chung

=> \(\Delta AHB\)vuông = \(\Delta AHC\)vuông (cạnh huyền - cạnh góc vuông) => HB = HC => H là trung điểm BC (đpcm)

b/ Ta có \(\Delta AHB\)\(\Delta AHC\)(cm câu a) => \(\widehat{BAH}=\widehat{HAC}\)(hai góc tương ứng) => AH là tia phân giác của \(\widehat{BAC}\)(đpcm)

c/ Nối I với H, K với H.

\(\Delta IHB\)vuông và \(\Delta KHC\)vuông có: HB = HC (cm câu a)

\(\widehat{B}=\widehat{C}\)(\(\Delta ABC\)cân tại A)

=> \(\Delta IHB\)vuông = \(\Delta KHC\)vuông (cạnh huyền - góc nhọn) => IB = KC (hai cạnh tương ứng) (1)

và AB = AC (\(\Delta ABC\)cân tại A) (2)

Lấy (2) trừ (1) => AB - IB = AC - KC

=> AI = AK => \(\Delta AIK\)cân tại A => \(\widehat{AIK}=\frac{180^o-\widehat{A}}{2}\)

và \(\widehat{B}=\frac{180^o-\widehat{A}}{2}\)(\(\Delta ABC\)cân tại A)

=> \(\widehat{AIK}=\widehat{B}\)ở vị trí đồng vị => IK // BC (đpcm)