Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC có \(\cos B=\dfrac{BA^2+BC^2-AC^2}{2\cdot BA\cdot BC}\)
\(\Leftrightarrow\dfrac{8-13+BC^2}{2\cdot2\sqrt{2}\cdot BC}=\dfrac{\sqrt{2}}{2}\)
\(\Leftrightarrow2\left(BC^2-5\right)=4\sqrt{2}\cdot\sqrt{2}\cdot BC=8BC\)
\(\Leftrightarrow BC^2-4BC-5=0\)
=>BC=5(cm)
I don't now
sorry
.....................
Đo và thấy rằng AC = 8 cm, AB = 8 cm.
Từ đó ta có nhận xét:
+ Tam giác ABC vuông cân tại C, AB = AC = 8 cm.
+ \(AB^2=CA^2+CB^2\)
A B C
a) Áp dụng định lí Pythagoras vào \(\Delta\)ABC, ta có :
\(\Rightarrow\)BC2 = AB2 + AC2
\(\Rightarrow\)BC2 = 22 + 22
\(\Rightarrow\)BC2 = 8
\(\Rightarrow\)BC = \(\sqrt{8}\)
Vậy độ dài cạnh BC là \(\sqrt{8}\)dm.
b) Áp dụng định lí Pythagoras vào \(\Delta\)ABC, ta có :
\(\Rightarrow\)BC2 = AB2 + AC2
\(\Rightarrow\)22 = AB2 + AB2 (Vì AB=AC)
\(\Rightarrow\)4 = 2AB2
\(\Rightarrow\)2 = AB2
\(\Rightarrow\sqrt{2}\)= AB
Vậy độ dài cạnh AB = \(\sqrt{2}\)m
c) Áp dụng định lí Pythagoras vào \(\Delta\)ABC, ta có :
\(\Rightarrow\)BC2 = AB2 + AC2
\(\Rightarrow\left(\sqrt{18}\right)^2\)= AC2 + AB2 (Vì AB=AC)
\(\Rightarrow\)18 = 2AC2
\(\Rightarrow\)9 = AC2
\(\Rightarrow\)3 = AC
Vậy độ dài cạnh AC = 3
a, Xét tam giác ABC vuông cân tại A có:
\(AB^2+AC^2=BC^2\)((định lí pytago)
\(\Rightarrow2^2+2^2=BC^2\)
\(\Leftrightarrow BC^2=8\\ \Leftrightarrow BC=\sqrt{8}\left(dm\right)\)
b), Xét tam giác ABC vuông cân tại A có:
\(AB^2+AC^2=BC^2\)(Định lý Pitago)
\(\Rightarrow AB^2+AC^2=2^2\)
\(\Leftrightarrow2AB^2=4\)
\(\Leftrightarrow AB^2=2\\ AB=\sqrt{2}\left(m\right)\)
c, Xét tam giác ABC vuông cân tại A có:
\(AB^2+AC^2=BC^2\)(Định lý Pitago)
\(\Rightarrow AB^2+AC^2=\sqrt{8}^2\)
\(\Leftrightarrow2AC^2=8\\ \Leftrightarrow AC^2=4\\ \Leftrightarrow AC=2\)
ĐS:.................................
#Châu's ngốc
A B C D E 1 1 1 2 2 1
\(\Delta ABC\)cân tại A nên\(\widehat{ABC}=\widehat{ACB}=\frac{180^0-\widehat{BAC}}{2}=75^0\)
Trên nửa mặt phẳng bờ BC chứa A lấy E sao cho\(\widehat{B_1}=\widehat{C_1}=45^0\)
=>\(\widehat{ABE}=75^0-45^0=30^0;\Delta EBC\)vuông cân tại E =>\(BE=EC=\frac{BC}{\sqrt{2}}=\sqrt{2}\left(cm\right)\)(định lí Pitago)
\(\Delta ABE,\Delta BAD\)có AB chung ; BE = AD\(\left(=\sqrt{2}cm\right)\);\(\widehat{ABE}=\widehat{BAD}\left(=30^0\right)\)
\(\Rightarrow\Delta ABE=\Delta BAD\left(c.g.c\right)\Rightarrow\widehat{A_1}=\widehat{B_2}\)
Lại có\(\Delta AEB=\Delta AEC\left(c.c.c\right)\)nên\(\widehat{A_1}=\widehat{A_2}=\frac{\widehat{BAC}}{2}=15^0\Rightarrow\widehat{B_2}=15^0\)
\(\Rightarrow\widehat{D_1}=\widehat{BAD}+\widehat{B_2}=45^0\)(\(\widehat{D_1}\)là góc ngoài\(\Delta ABD\)) ;\(\widehat{DBC}=75^0-15^0=60^0\)
\(\Delta BDC\)có\(\widehat{D_1}< \widehat{DBC}< \widehat{DCB}\left(45^0< 60^0< 75^0\right)\)nên BC < DC < BD