Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : góc BEA =90 độ ( chắn nửa đt tâm O)
góc ADC = 90độ ( chắn nửa đt tâm O')
=> góc BEC = góc BDC
mà 2 góc này cùng nhìn cung BC
=> tgnt => B,C,D,E thuộc 1 đt
2/ta có góc BFA =90 ( chắn nửa đt tâm O)
=> BF vuông góc AF(1)
góc AFC =90(chắn nửa đt tâm O')
=>AF vuông góc CF(2)
(1)(2) => BF // CF
=> B, F,C thẳng hàng
ta có : tg BEAF nt => góc EBA = EFA(3)
tg ADCF nt => góc AFD = ACD(4)
tg BEDC nt => góc EBD = ECD(5)
từ (3)(4)(5)=> góc EFA =AFD
=> FA là p/g EFD
a) Ta có: \(\angle AEB=\angle ADB=90\Rightarrow ABDE\) nội tiếp
b) Vì AK là đường kính \(\Rightarrow\angle ACK=\angle ABK=90\)
\(\Rightarrow\left\{{}\begin{matrix}CK\bot AC\\BK\bot AB\end{matrix}\right.\) mà \(\left\{{}\begin{matrix}BH\bot AC\\CH\bot AC\end{matrix}\right.\Rightarrow\) \(BH\parallel CK,CH\parallel BK\)
\(\Rightarrow BHCK\) là hình bình hành
c) Vì F là giao điểm của CH và AB \(\Rightarrow CF\bot AB\)
Ta có: \(\dfrac{AD}{HD}+\dfrac{BE}{HE}+\dfrac{CF}{HF}=\dfrac{AD.BC}{HD.BC}+\dfrac{BE.AC}{HE.AC}+\dfrac{CF.AB}{HF.AB}\)
\(=\dfrac{S_{ABC}}{S_{HBC}}+\dfrac{S_{ABC}}{S_{AHC}}+\dfrac{S_{ABC}}{S_{AHB}}=S_{ABC}\left(\dfrac{1}{S_{HBC}}+\dfrac{1}{S_{AHC}}+\dfrac{1}{S_{AHB}}\right)\)
\(\ge S_{ABC}.\dfrac{9}{S_{HBC}+S_{HAC}+S_{AHB}}\)(BĐT Schwarz) \(=S_{ABC}.\dfrac{9}{S_{ABC}}=9\)
\(\Rightarrow Q_{min}=9\)