Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
Phần c) thì nhờ các cao nhân khác thoii.
C E D A B 1 2
a) Ta xét tam giác ABD và tam giác EBD:
AB = EB (gt)
BD cạnh chung
\(\widehat{B_1}=\widehat{B_2}\)
Vậy tam giác ABD = tam giác EBD (c.g.c)
\(\Rightarrow DE=DA\)
b) Theo phần a), tam giác ABD = tam giác EBD
\(\Rightarrow\widehat{BAD}=\widehat{BED}=90^o\)
a) Xét ΔABD và ΔEBD có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔABD=ΔEBD(c-g-c)
b) Ta có: ΔABD=ΔEBD(cmt)
nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{BED}=90^0\)
Vậy: \(\widehat{BED}=90^0\)
c) Ta có: BA=BE(gt)
nên B nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: ΔBAD=ΔBED(cmt)
nên AD=ED(hai cạnh tương ứng)
hay D nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE
hay BD⊥AE(đpcm)
a) Xét ΔABD và ΔEBD có
BA=BE(gt)
ˆABD=ˆEBDABD^=EBD^(BD là tia phân giác của ˆABEABE^)
BD chung
Do đó: ΔABD=ΔEBD(c-g-c)
b) Ta có: ΔABD=ΔEBD(cmt)
nên ˆBAD=ˆBEDBAD^=BED^(hai góc tương ứng)
mà ˆBAD=900BAD^=900(ΔABC vuông tại A)
nên ˆBED=900BED^=900
Vậy: ˆBED=900BED^=900
c) Ta có: BA=BE(gt)
nên B nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: ΔBAD=ΔBED(cmt)
nên AD=ED(hai cạnh tương ứng)
hay D nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE
hay BD⊥AE(đpcm)
a)Xet ΔABD va ΔEBD co:
AB=EB(GT)
∠ABD = ∠EBD(BD la tia phan giac ∠ABE)
BD chung
⇒ΔABD = ΔEBD(c.g.c)
b)theo cau a co :ΔABD = ΔEBD
⇒DA=DE(2 canh tuong ung)
c)theo cau a co:ΔABD = ΔEBD
⇒∠BAD=∠BED( 2 goc tuong ung)
Ma ∠BAD=90do
⇒∠BED = 90do