K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2018

A B C D E H Q P O

a) Tg ADHE có \(\widehat{BAC}=\widehat{ADH}=\widehat{AEH}=90^o\)

=> Tg ADHE là hcn

=> DE = AH ( t/c hcn )

b) ΔECH vuông ở E => EQ = HQ = \(\dfrac{1}{2}HC\)

+)Tg ADHE là hcn

=> OH = OE = OD

+)Xét ΔQEO và ΔQHO có :

HQ = EQ ( cmt )

OH = OE ( cmt )

OQ chung

=> ΔQEO = ΔQHO ( c.c.c )

=> \(\widehat{OHQ}=\widehat{OEQ}\\ mà:\widehat{OHQ}=90^o\Rightarrow\widehat{QEO}=90^o\Rightarrow EQ\perp DE\)

cmtt , được ΔDPO = ΔHPO ( c.c.c ) => PD ⊥ DE

+) \(EQ\perp DE\\ PD\perp DE\) ( cmt ) ==> EQ // PD => Tg DEQP là hình thang

\(\widehat{PDE}=90^o\left(cmt\right)\) => Tg DEQP là hình thang cân

c) Dễ c/m được QO là đường trung bình ΔAHC

=> QO // AC mà AC ⊥ AB => QO ⊥ AB

=> QO là đường cao ΔABQ tại đỉnh B

+) ΔABQ có AH , QO lần lượt là đường cao của BQ và AB

\(AH\cap QOtạiO\)

=> O là trực tâm ΔABQ

d) Ta có :

\(S_{ABC}=\dfrac{1}{2}BC\cdot AH\\ =\dfrac{1}{2}\left(BH+CH\right)\cdot DE\\ =\dfrac{1}{2}\left(2DP+2EQ\right)\cdot DE\\ =\dfrac{1}{2}\cdot2\cdot\left(DP+EQ\right)\cdot DE\\ =\left(DP+EQ\right)\cdot ED\)

\(S_{DEQP}=\dfrac{1}{2}\left(DP+EQ\right)\cdot ED\)

mà SABC = ( DP + EQ ) . DE

=> SABC = 2SDEQP

21 tháng 2 2020

Vì sao OQ//AC vậy ?????????????

17 tháng 12 2018

bn tự kẻ hình nha, phần a bn bk làm r nên mk ko làm nx

b) ta có: OD = OH ( dễ chứng minh ADHE là h.c.n => OD = OH do t/c 2 đường chéo)

=> tg ODH cân tại O => ^HDO = ^DHO(1)

Xét tg DBH vuông tại D

có: BP = PH(gt)

=> DP = PH (t/c đường trung tuyến của tg vuông)

=> tg DPH cân tại P => ^PDH = ^PHD (2)

Từ (1);(2) => ^HDO + ^PDH = ^DHO + ^PHD = ^BHA = 90 độ

=> ^HDO + ^PDH = 90 độ => ^PDE = 90 độ => \(DP\perp DE⋮D\)

cmtt, ta có: \(QE\perp DE⋮E\)

=> DP // QE

Xét tứ giác DEQP

có: DP// QE; ^PDE = 90 độ

=> DEQP là h.thang vuông

c) ( Nối Q với O; gọi giao điểm của QO và AB là K)

ta có: OA = OH; DH // AC ( ADHE là h.c.n)

Xét tg ACH

có: OA = OH; HQ = QC

=> QO là đường trung bình của tg ACH

=> QO // AC

mà DH // AC (cmt) => QO // DH

Lại có: \(DH\perp AB⋮D\left(gt\right)\)

\(\Rightarrow QO\perp AB⋮K\)

Xét tg ABQ

có: \(QO\perp AB⋮K\left(cmt\right);AH\perp BQ⋮H\left(gt\right)\)

QO cắt AH tại O

=> O là trực tâm của tg ABQ

d) ta có: \(S_{\Delta DPB}=\frac{BP.DP}{2};S_{\Delta DPH}=\frac{PH.DP}{2}\)

mà BP = PH \(\Rightarrow S_{\Delta DPB}=S_{\Delta DPH}\)(1)

cmtt, ta có: \(S_{\Delta EQH}=S_{\Delta EQC}\)(2)

ta có: tg ADE = tg HED ( cgv-cgv) ( do ADHE là h.c.n => AD = HE; AE = HD)

\(\Rightarrow S_{\Delta ADE}=S_{\Delta HED}\) (3)

Từ (1);(2);(3) => ...

đến chỗ này bn chỉ cần cộng diện tích các tg lại, dễ chứng minh được đpcm

a) Vì HD vuông góc với AB 

=> HDB = HDA = 90 độ

Mà BAC = 90 độ (gt)

=> BAC = BDH = 90 độ

Mà 2 góc này ở vị trí đồng vị

=> DH //AE

=> DHEA là hình thang 

Mà HE vuông góc với AC

=> HEA = 90 độ

=> HEA = BAC = 90 độ

=> DHEA là hình thang cân 

=> DE = AH ( hình thang  cân hai đường chéo bằng nhau)

=> dpcm