Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác ABE và tam giác HBE có
AB=HB(gt)
\(\widehat{ABE}\)=\(\widehat{HBE}\)(gt)
BE chung
\(\Rightarrow\)\(\Delta\)ABE=\(\Delta\)HBE(c.g.c)\(\Rightarrow\)\(\widehat{EAB}\)=\(\widehat{EHB}\)mà \(\widehat{EAB}\)=90 độ\(\Rightarrow\)\(\widehat{EHB}\)=90 độ
\(\Rightarrow\)EH vuông góc vs BC
a) Vì BE là tia phân giác của tam giác ABC
=> \(\widehat{ABE}=\widehat{EBC}\)hay \(\widehat{ABE}=\widehat{EBH}\)
* Xét tam giác ABE và tam giác HBE có :
+ )BA = BH ( gt)
+) \(\widehat{ABE}=\widehat{EBH}\) (cmt)
+)BE chung
=> tam giác ABE = tam giác HBE ( c-g-c)
-> \(\widehat{BAE}=\widehat{BHE}\)( hai cạnh tương ứng )
Mà \(\widehat{BAE}=90^0\)( \(\widehat{BAC}=90^0\))
-> \(\widehat{BHE}=90^0\)
=> BH vuông góc EH hay BC vuông góc EH ( đpcm)
b) Vì tam giác ABE = tam giác HBE (cmt)
=> AE = EH ( 2 cạnh tương ứng )
* Có : AE = EH ( cmt)
=> Khoảng cách từ điểm E đến H bằng khoảng cách từ điểm E đến A ( 1)
BA = BH ( gt )
=. Khoản cách từ điểm B đến điềm H bằng khoảng cách từ điểm B đến điểm A ( 2 )
Từ ( 1 ) và ( 2 ) => BE là đường trung trực của AH ( đpcm )
c) Vì tam giác ABC có \(\widehat{A}\)= \(90^0\) ( gt)
=> AB vuông góc AC hay AE vuông góc AK ( E e AC ; K e AB )
=>\(\widehat{EAK}=90^0\)
Vì EH vuông góc AC ( cmt)
=> \(\widehat{EHC}=90^0\)
Xét tam giác AEK và tam giác HEC có
AE = EH (cmt)
\(\widehat{EAK}=\widehat{EHC}=90^0\)
\(\widehat{AEK}=\widehat{HEC}\)(đối đỉnh)
=> tam giác AEK = tam giác HEC ( g-c-g)
=> EK = EC ( 2 cạnh tương ứng)
d) Có : BA = BH ( gt 0
=> tam giác BAH cân tại B
=. \(\widehat{BAH}=\frac{180^0-\widehat{ABH}}{2}\)( 3)
Vì tam giác AEK = tam giác HEC ( cmt )
=> AK = HC ( 2 cạnh tương ứng)
Có: AK = BA + AK
BC = BH + HC
Mà BA = BH ( gt )
AK = HC ( cmt)
=> BK = BC
=> Tam giác BKC cân tại B
=>\(\widehat{BKC}=\frac{180^0-\widehat{KBC}}{2}\)hay \(\widehat{BKC}=\frac{180^0-\widehat{ABH}}{^{ }2}\)( 4 )
Từ ( 3 ) và ( 4 ) => \(\widehat{BAH}=\widehat{BKC}\)
Mà 2 góc ở vị trí đồng vị
=> AH // BC ( đpcm)
e) Có : Tam giác BKC cân tại B
M là trung điểm BC
=> BM là đường trung tuyến đồng thời là đường phân giác của tam giác BKC
Có BK là đường phân giác của tam giác BKC (cmt)
=> BK là đường phân giác của\(\widehat{KBC}\)hay \(\widehat{BAH}\)
Mà BE cũng là đường phân giác của \(\widehat{BAH}\)
=> BE trùng BK hay ba điểm B ; E ; K thẳng hàng ( đpcm)
B A E M K C H
a) Bạn ghi câu a) không rõ ràng nên mình thay thế bằng ý kiến của mình nhé !
CMR : \(\Delta ABE=\Delta HBE\)
Xét \(\Delta ABE,\Delta HBE\) có :
\(BA=BH\left(gt\right)\)
\(\widehat{ABE}=\widehat{HBE}\) (BE là tia phân giác của \(\widehat{B}\) )
\(BE:chung\)
=> \(\Delta ABE=\Delta HBE\left(c.g.c\right)\)
b) Gọi \(AH\cap BE=\left\{O\right\};O\in BE\)
Xét \(\Delta ABO,\Delta HBO\) có :
\(AB=BH\left(gt\right)\)
\(\widehat{ABO}=\widehat{HBO}\) (BE là tia phân giác của \(\widehat{B}\) ; \(O\in BE\))
AO : Chung
=> \(\Delta ABO=\Delta HBO\left(c.g.c\right)\)
=> \(\widehat{BOA}=\widehat{BOH}\) (2 góc tương ứng)
Mà : \(\widehat{BOA}+\widehat{BOH}=180^o\left(Kềbù\right)\)
=> \(\widehat{BOA}=\widehat{BOH}=\dfrac{180^o}{2}=90^o\)
=> \(BO\perp AH\)
Hay : \(BE\perp AH\)
c) Ta chứng minh được : \(\Delta BKE=\Delta BCE\)
Suy ra : \(EK=EC\) (2 cạnh tương ứng)
d) Xét \(\Delta ABC\) có :
BE là tia phân giác của \(\widehat{ABC}\) (1)
Xét \(\Delta KEM,\Delta CEM\) có :
\(EK=EC\left(cmt\right)\)
\(EM:chung\)
\(KM=CM\) (M là trung điểm của KC)
=> \(\Delta KEM=\Delta CEM\left(c.c.c\right)\)
=> \(\widehat{MEK}=\widehat{MEC}\) (2 góc tương ứng)
=> EM là tia phân giác của \(\widehat{KEC}\) (2)
Từ (1) và (2) => \(BE\equiv ME\)
=> B, E, M thẳng hàng
=> đpcm.
a: Xét ΔBAE và ΔBHE có
BA=BH
\(\widehat{ABE}=\widehat{HBE}\)
BE chung
Do đó: ΔBAE=ΔBHE
Suy ra: \(\widehat{BAE}=\widehat{BHE}=90^0\)
hay EH\(\perp\)BC
b: Ta có: BA=BH
EA=EH
DO đó; BE là đường trung trực của AH
c: Xét ΔAEK vuông tại A và ΔHEC vuông tại H có
EA=EH
\(\widehat{AEK}=\widehat{HEC}\)
Do đó: ΔAEK=ΔHEC
Suy ra: EK=EC
a/ Xét \(\Delta ABE\) và \(\Delta HBE\) có:
\(BA=BH\left(gt\right)\)
\(\widehat{ABE}=\widehat{HBE}\left(gt\right)\)
BE: Cạnh chung
=> \(\Delta ABE=\Delta HBE\left(c-g-c\right)\)
\(\Rightarrow\widehat{BAE}=\widehat{BHE}=90^o\)
=> \(EH\perp BC\left(đpcm\right)\)
b/ Gọi gia điểm của AH và BE là O
XÉt \(\Delta AOB\) và \(\Delta HOB\) có:
BO: cạnh chung
\(\widehat{ABO}=\widehat{HBO}\left(gt\right)\)
BA = BH (gt)
\(\Rightarrow\Delta AOB=\Delta HOB\left(c-g-c\right)\)
\(\Rightarrow AO=HO\left(1\right)\)
và \(\widehat{AOB}=\widehat{HOB}\)
mà \(\widehat{AOB}+\widehat{HOB}=180^o\) (kề bù)
\(\Rightarrow\widehat{AOB}=\widehat{HOB}=90^o\)
\(\Rightarrow BO\perp AH\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow\) BE là đương trung trực của HA (đpcm)
c/ Xét 2 \(\Delta\) vuông: \(\Delta BKH\) và \(\Delta BCA\) có:
BH = BA (gt)
\(\widehat{B}:chung\)
\(\Rightarrow\Delta BKH=\Delta BCA\left(cgv-gnk\right)\)
\(\Rightarrow BK=BC\)
Xét \(\Delta BKE\) và \(\Delta BCE\) có:
BE: cạnh chung
\(\widehat{KBE}=\widehat{CBE}\left(gt\right)\)
BK = BC (cmt)
\(\Rightarrow\Delta BKE=\Delta BCE\left(c-g-c\right)\)
\(\Rightarrow EK=EC\left(đpcm\right)\)
d/ Vì BH = BA(gt) \(\Rightarrow\Delta BAH\) cân
Lại có: BK = BC(đã cm) \(\Rightarrow\Delta BKC\) cân
mà \(\widehat{B}:chung\)
=> \(\widehat{BAH}=\widehat{BKC}=\widehat{BHA}=\widehat{BCK}\)
mà \(\widehat{BAH}\) và \(\widehat{BCK}\) nằm ở vị trí đồng vị
\(\Rightarrow\) AH // CK (đpcm)
e/ muộn r`, hướng dẫn cách làm:
chứng minh t/g BKM = t/g BCM
=> BM là tia p/g góc B
mà BE cũng là tia p/g góc B
=> M,E,B thẳng hàng