K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2015

Goi F la giao diem cua BE va AH, I la giao diem cua BE va AD

ta co: goc ABC+ goc ACB=90 ( tam giac ABC vuong tai A)

         goc HAC+ goc ACB=90 ( tam giac AHC vuong tai H)

===> goc ABC= goc HAC

ta co : goc HAD=1/2 goc HAC ( AD la tia p/g goc HAC)

          goc FBH=1/2 goc ABC ( BE la tia p/g goc ABC )

          goc ABC= goc HAC ( cmt)

--> goc HAD= goc FBH

ta co: goc BFH+ goc FBH =90 ( tam giac FBH vuong tai H)

         goc FBH= goc HAD ( cmt)

        goc BFH= goc AFI ( 2 goc doi dinh)

===> goc  HAD+ goc AFI =90 hay goc FAI+ goc AFI=90

xet tam giac AFI ta co: goc AFI+ gic FAI+ goc AIF=180 ( tong 3 goc trong tamgiac )

               ma goc AFI+ goc FAI =90 ( cmt )

              nen 90+ goc AIF =180

--> goc AIF =180-90=90

--> AI vuong goc FI hay BE vuong goc AD tai I

 

8 tháng 8 2018

a, Xét tg BAE và tg BDE  ( \(\widehat{BAE}=\widehat{BDE}=90^0\))

BA=BD (gt)

BE chung

=> tg BAE = tg BDE ( ch-cgv)

=> AE=ED 

Ta có \(\hept{\begin{cases}BA=BD\left(gt\right)\\AE=ED\left(cmt\right)\end{cases}}< =>\)BE trung trực AD (đpcm) 

b, +ED vuông BC

+ AH vuông BC

=> AH//DE

=> \(\widehat{HAD}=\widehat{ADE}\)( So le trong) (2)

Lại có gọi m là giao 2 đường thẳng BE và AD

vì BE trung trực AD =>+ \(\widehat{AME}=\widehat{EMD}=90^{0^{ }}\)

Xét tg AEM và tg DEM có \(\left(\widehat{AME}=\widehat{EMD}=90^0\left(cmt\right)\right)\)

+ AD = ED (cma)

+ EM chung

=> tg AEM = tg DEM ( ch-cgv)

=> \(\widehat{DAE}=\widehat{ADE}\)(2)

tỪ (1) VÀ (2) => \(\widehat{HAD}=\widehat{DAE}\)=> AD phân giác góc AHC

a: Xét ΔAHD vuông tại H và ΔAKD vuông tại K có

AD chung

góc HAD=góc KAD

=>ΔAHD=ΔAKD

b: AH=AK

DH=DK

=>AD là trung trực của HK

c: Gọi M là giao của DK với AH

Xét ΔAMC có

MK,CH là đường cao

MK cắt CH tại D

=>D là trực tâm

=>AD vuông góc MC

mà AD vuông góc CE

nên C,M,E thẳng hàng

=>AH,KD,CE đồng quy tại M

26 tháng 4 2016

a) ta có

goc BAD+ goc DAC =90 (2 góc kề phụ)

goc ADB+goc HAD=90 ( tam giác AHD vuông tại H)

goc DAC=goc HAD (AD lả p/g goc  HAC)

==> góc BAD= goc ADB

-> tam giac BAD cân tại B

b) xet tam giac ADH và tam giac ADE ta có

AD= AD ( cạnh chung) 

goc HAD = goc DAC ( AD là p/g goc HAC)

goc AID = góc AIE (=90)

--> tam giac ADH= tam giac ADE (g-c-g)

-< AH= AE ( 2 canh tương ứng)

Xét tam giac AHD và tam giac AED ta có

AD=AD ( cạnh chung)

AH=AE (cmt)

goc DAH= goc DAE ( AD là p/g HAC)

-> tam giac AHD= tam giac AED ( c-g-c)

-> goc AHD= goc AED ( 2 góc tương ứng

mà góc AHD = 90 ( AH vuông góc BC)

nên AED =90

-> DE vuông góc AC

c) Xét tam giac ABH vuông tại H ta có

AB2= AH2+BH2 ( dly pi ta go)

152=122+BH2

BH2 =152-122=81

BH=9

ta có BA=BD ( tam giác ABD cân tại B)

          BA=15 cm (gt)

-> BD=15

mà BH+HD=BD ( H thuộc BD)

nên 9+HD=15

HD=15-9=6

Xét tam giác ADH vuông tại H ta có

AD2=AH2+HD2 ( định lý pitago)

AD2=122+62=180

-> AD=\(\sqrt{180}=6\sqrt{5}\)

12 tháng 5 2018

a) Vì BD = BA nên ΔΔBAD cân tại B

=> BADˆBAD^góc BAD = g BDA (góc đáy) →→-> đpcm

b) Ta có: góc BAD + g DAC = 90o

=> g DAC = 90o - g BAD (1)

Áp dụng tc tam giác vuông ta có:

g HAD + g BDA = 90o

=> g HAD = 90o - g BDA (2)

mà góc BAD = g BDA (câu a)

=> gDAC = g HAD

=> AD là tia pg của g HAC.

c) Áp dụng tc tổng 3 góc trong 1 tg ta có:

g AHD + g HDA + g HAD = 180o

=> 90o + g HDA + g HAD = 180o

=> g HDA + g HAD = 90o (3)

g DAC + g DKA + g ADK = 180o

=> g DAC + 90o + g ADK = 180o

=> g DAC + g ADK = 90o (4)

mà gDAC = g HAD hay gDAK = gHAD

Xét tgHAD và tgKAD có:

g HDA = g ADK (c/m trên)

AD chung

g HAD = g DAK (c/m trên)

=> tgHAD = tgKAD (g.c.g)

=> AH = AK (2 cạnh t/ư)

4 tháng 4 2018

trả lời nhanh nha

19 tháng 5 2022

undefined

a/ Xét \(\Delta\) vuông AHD và \(\Delta\) AED. Có:

\(\widehat{A1}\)\(\widehat{A2}\) ( giả thiết)

AD chung

=> \(\Delta AHD=\Delta AED\) ( ch-gn)

=> DH = DE ( 2 cạnh tương ứng )

b/ BMC không cân được bạn nhé. bạn chép nhầm đề bài r: Chứng minh DMC cân mới đúng.

Xét \(\Delta vuôngHDM\) và \(\Delta vuôngEDC\). Có:

\(\widehat{D1}\) = \(\widehat{D2}\) ( đối đỉnh)

HD = HE ( cmt)

=> \(\Delta HDM=\Delta EDC\left(cgv-gnk\right)\)

=> DM = DC ( 2 cạnh tương ứng)

=> Xét \(\Delta DMCcóDM=DC=>\Delta DMCcân\left(cântạiD\right)\)

~ Cậu ktra lại nhé~