K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2017

D A C B b c a b/2

Ta có: \(\widehat{CAB}=120^o\Rightarrow\widehat{CAD}=60^o\)

\(\Rightarrow\Delta DAC\) là nửa tam giác đều.

\(\Rightarrow AD=\frac{AC}{2}=\frac{b}{2}\)

Xét \(\Delta CDB\) vuông tại D có:

\(CB^2=CD^2+DB^2=\left(AC^2-AD^2\right)+\left(AD+AB\right)^2\)

\(\Leftrightarrow CB^2=AC^2-AD^2+AD^2+2AD.AB+AB^2=AC^2+2AB.\frac{AC}{2}+AB^2\)

\(\Leftrightarrow a^2=b^2+c^2+bc\)

29 tháng 8 2015

Kẻ CE vuông góc với AB, ta có ngay tam giác ACE vuông có một góc nhọn 60. Suy ra \(AE=\frac{1}{2}AC=\frac{b}{2},CE=\frac{\sqrt{3}}{2}b\). Xét tam giác vuông EBC có '\(EB=c+\frac{b}{2},EC=\frac{\sqrt{3}}{2}b\to a^2=BC^2=BE^2+CE^2=\left(c+\frac{b}{2}\right)^2+\left(\frac{\sqrt{3}}{2}b\right)^2=c^2+bc+b^2\)

đáp án 

=c2 + bc + b2

hok tót

3 tháng 10 2019

kẻ đường cao BH

BC2=BH2+HC2(pytago)

BH=AB.sin60; HC=AC-AH=AC-ABcos60 thay vào trên

BC2=(AB.sin60)2+(AC-ABcos60)2=AB2.sin260+AC2-2AB.ACcos60+AB2.cos260=AB2+AC2-2AB.AC.\(\frac{1}{2}\)=AB2+AC2-AB.AC

3 tháng 10 2019

A B H C

kẻ BH _|_ AC (H thuộc AC)

xét tam giác ABH có : góc A + góc ABH + góc AHB = 180 (ĐL)

Có : góc A = 60 (gt)

góc AHB = 90 do BH _|_ AC (Cách vẽ)

=> góc ABH = 180 - 90 - 60 = 30 

xét tam giác ABH vuông tại H có góc ABH = 30 

=> AH = 1/2.AB (đl)

=> AB = 2AH     (1)

xét tam giác ABH vuông tại H 

=> AB^2 = AH^2 + BH^2 (Đl PTG)

=> BH^2 = AB^2 - AH^2    (2) 

xét tam giác BHC vuông tại H : 

=> BC^2 = HC^2 + BH^2 (đl PTG)

=> BC^2 = BH^2 + (AC - AH)^2 

=> BC^2 = BH^2 + AC^2 - 2AH.AC + AH^2 

thay (1)(2) vào ta được : 

BC^2 = (AB^2 - AH^2) + AC^2 - AB.AC + AH^2

=> BC^2 = AB^2 - AH^2+ AC^2 - AB.AC + AH^2

=> BC^2 = AB^2 + AC^2 - AB.AC

Ta có AH=DE ( vì ADHE là hcn)

mà AH2=BH.BC

=> AH4=HB2.HC2=BD.CE.BC.BA

=> AH3=BD.CE.BC