K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
ND
Cho tam giác ABC có A - B = 90o. Từ C kẻ CH vuông góc với tia BA. Chứng minh rằng: góc HAC = góc BCH
1
T
20 tháng 8 2016
Có góc BAC - góc B = 90 độ(gt)
=> góc BAC = 90 độ + góc B
Có góc BAC + góc HAC = 180 độ (2 góc kề bù)
=> góc HAC = 180 độ - góc BAC
mà góc BAC = 90 độ +góc B
=> góc HAC = 180 độ - ( 90 độ + góc B)= 90 độ -góc B(1)
Xét tam giác BHC vuông tại H ( CH vuông góc vs BA ) có
góc B + góc BCH = 90 độ (t/c tam giác vuông)
=> góc BCH = 90 độ - góc B (2)
từ (1) và (2) => góc HAC = góc BCH
vậy góc HAC = góc BCH
LT
0
C B A H
Xét tam giác ABC có: góc A + góc B + góc C = 1800 ( tổng 3 góc trong một tam giác)
=> góc C = 1800 - ( góc A + góc B) = 180 - 90 = 900
=> góc C = góc ACH + góc BCH = 900 (1)
xét tam giác AHC có góc AHC = 900
=> góc HAC + góc ACH = 1800 - góc AHC = 180 - 90 = 900 (2)
từ (1) và (2) suy ra
góc HAC = góc BCH ( vì cùng phụ với góc ACH)
Điều phải chứng minh