K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
18 tháng 7 2023
a) Xét ∆ ABK và ∆IBK có:
+\(\widehat{ABK}=\widehat{KBI}\)(gt)
+BK chung
+\(\widehat{BAK}=\widehat{BIK}\left(=90^o\right)\)
\(\Rightarrow\)∆ABK=∆IBK(ch-gnhon)
b) Ta có: \(\left\{{}\begin{matrix}KI\perp BC\left(gt\right)\\AD\perp BC\left(gt\right)\end{matrix}\right.\)
Do đó: KI//AD
\(\Rightarrow\widehat{DAI}=\widehat{AIK}\)(2 góc SLT) (1)
Ta có ∆ABK=∆IBK(cmt)
nên KA=KI (2 cạnh tương ứng)
Xét ∆KAI cân tại K
\(\Rightarrow\widehat{KAI}=\widehat{KIA}\)(2 góc đáy) (2)
Từ (1) và (2)\(\Rightarrow\widehat{DAI}=\widehat{KAI}\Leftrightarrow\widehat{DAI}=\widehat{IAC}\)
=> AI là tia pgiac(đpcm)
a, xét tam giác ABK và tam giác IBK có : BK chung
góc CAB = góc KIB = 90 do....
góc IBK = góc KBA do BK là phân giác của góc ABC (gt)
=> tam giác ABK = tam giác IBK (ch - gn)
b, tam giác ABK = tam giác IBK (câu a)
=> KI = KA (đn)
xét tam giác KIC và tam giác KAH có : góc IKC = góc AKH (đối đỉnh)
góc KAH = góc KIC = 90 do...
=> tam giác KIC = tam giác KAH (cgv - nhk)
=> CI = HA (đn) và IB = AB do tam giác ABK = tam giác IBK (câu a)
=> CI + IB = HA + AB
=> CB = HB
=> tam giác CHB cân tại B (đn)
c, xét tam giác BHM và tam giác BCM có : MB chung
CB = HB (câu b)
góc HMB = góc CMB = 90 do BM _|_ HC (gt)
=> tam giác BHM = tam giác BCM (ch - cgv)
=> góc CBM = góc HBM (đn) mà tia BM nằm giữa BC và BH
=> BM là phân giác của góc ABC (đn)
BK là phân giác của hóc ABC (gt)
=> 3 điểm B; M; K thẳng hàng
d, góc B = 60 (em đoán vậy thôi :v)
Giải
a, Xét \(\Delta ABK\) và \(\Delta IBK\) có BK chung
\(\Rightarrow\widehat{CAB}=\widehat{KIB}=90^0\)
\(\Rightarrow\widehat{IBK}=\widehat{KBA}\)do BK là phân giác của \(\widehat{ABC}\)
\(\Rightarrow\Delta ABK=\Delta IBK\)
b, \(\Rightarrow\Delta ABK=\Delta IBK\Leftrightarrow KI=KA\)
Xét \(\Delta KIC\) và \(\Delta KAH\) có \(\widehat{IKC}=\widehat{AKH}\) ( đối đỉnh )
góc KAH = góc KIC = 900
=> tam giác KIC = tam giác KAH (cgv - nhk)
=> CI = HA (đn) và IB = AB do tam giác ABK = tam giác IBK (câu a)
=> CI + IB = HA + AB
=> CB = HB
=> tam giác CHB cân tại B (đn)
c, xét tam giác BHM và tam giác BCM có : MB chung
=> CB = HB
góc HMB = góc CMB = 90 do BM _|_ HC
=> tam giác BHM = tam giác BCM
=> góc CBM = góc HBM (đn) mà tia BM nằm giữa BC và BH
=> BM là phân giác của góc ABC
BK là phân giác của hóc ABC
=> 3 điểm B; M; K thẳng hàng
d, góc B = 60