K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2019

a, xét tam giác ABK và tam giác IBK có : BK chung

góc CAB = góc KIB = 90 do.... 

góc IBK = góc KBA do BK là phân giác của góc ABC (gt)

=> tam giác ABK = tam giác IBK (ch - gn)

b,  tam giác ABK = tam giác IBK (câu a)

=> KI = KA (đn)

xét tam giác KIC và tam giác KAH có : góc IKC = góc AKH (đối đỉnh)

góc KAH = góc KIC = 90 do...

=> tam giác KIC = tam giác KAH  (cgv - nhk)

=> CI = HA (đn) và IB = AB do tam giác ABK = tam giác IBK (câu a)

=> CI + IB = HA + AB 

=> CB = HB 

=> tam giác CHB cân tại  B (đn)

c, xét tam giác BHM và tam giác BCM có : MB chung

CB = HB (câu b)

góc HMB = góc CMB = 90 do BM _|_ HC (gt)

=> tam giác BHM = tam giác BCM  (ch - cgv)

=> góc CBM = góc HBM (đn) mà tia BM nằm giữa BC và BH 

=> BM là phân giác của góc ABC (đn)

BK là phân giác của hóc ABC (gt)

=> 3 điểm B; M; K thẳng hàng

d, góc B = 60 (em đoán vậy thôi :v)

17 tháng 2 2019

                            Giải

a, Xét \(\Delta ABK\) và \(\Delta IBK\) có BK chung

\(\Rightarrow\widehat{CAB}=\widehat{KIB}=90^0\)

 \(\Rightarrow\widehat{IBK}=\widehat{KBA}\)do BK là phân giác của \(\widehat{ABC}\)

 \(\Rightarrow\Delta ABK=\Delta IBK\)

b,  \(\Rightarrow\Delta ABK=\Delta IBK\Leftrightarrow KI=KA\)

Xét \(\Delta KIC\) và \(\Delta KAH\)\(\widehat{IKC}=\widehat{AKH}\) ( đối đỉnh )

góc KAH = góc KIC = 900

=> tam giác KIC = tam giác KAH  (cgv - nhk)

=> CI = HA (đn) và IB = AB do tam giác ABK = tam giác IBK (câu a)

=> CI + IB = HA + AB 

=> CB = HB 

=> tam giác CHB cân tại  B (đn)

c, xét tam giác BHM và tam giác BCM có : MB chung

=> CB = HB 

góc HMB = góc CMB = 90 do BM _|_ HC 

=> tam giác BHM = tam giác BCM  

=> góc CBM = góc HBM (đn) mà tia BM nằm giữa BC và BH 

=> BM là phân giác của góc ABC 

BK là phân giác của hóc ABC 

=> 3 điểm B; M; K thẳng hàng

d, góc B = 60

Bài 1 : Cho tAm giác cân ABC có <BAC=120 độ. Vẽ đường cao AM ( M thuộc BC ) a) Chứng mình rằng : CM=MB và AM là tia phân giác của <BACb) Kẻ MD vuông góc với AB ( D thuộc AB), kẻ ME vuông góc với AC ( E thuộc AC). Chứng minh tam giác ADE cân và DE // BC.c) Chứng minh rằng tam giác MDE đềud) Đường vuông góc với BC kẻ từ C cắt tia BA tại F. Tính độ dài cạnh AF biết CF = 6 cmBài 2: Cho tam giác ABC vuông tại B,...
Đọc tiếp

Bài 1 : Cho tAm giác cân ABC có <BAC=120 độ. Vẽ đường cao AM ( M thuộc BC )

 a) Chứng mình rằng : CM=MB và AM là tia phân giác của <BAC

b) Kẻ MD vuông góc với AB ( D thuộc AB), kẻ ME vuông góc với AC ( E thuộc AC). Chứng minh tam giác ADE cân và DE // BC.

c) Chứng minh rằng tam giác MDE đều

d) Đường vuông góc với BC kẻ từ C cắt tia BA tại F. Tính độ dài cạnh AF biết CF = 6 cm

Bài 2: Cho tam giác ABC vuông tại B, kẻ AI là tia phân giác của góc BAC, IH vuông góc với AC tại H.

a. Chứng minh tam giác ABI = tam giác AHI

b. HI  cắt AB tại K. Chứng tỏ rằng BK=HC

c. Chứng minh rằng BH // KC

d. Qua C kẻ đường thẳng song song với HK, cắt AI tại O. Tìm điều kiện của tam giác ABC để tam giác CIO đều

Bài 3: Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC ( H thuộc BC)

a.  Chứng minh : tam giác AHB= tam giác AHC

b. Gỉa sử AB = AC = 5cm, BC = 8cm. Tính độ dài AH

c. Trân tia đối của tai HA lấy điểm M sao cho HM - HA. chứng minh tam giác ABM cân

d. Chứng minh BM // AC

0
16 tháng 2 2021

thawngtr là thẳng nha mn

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt...
Đọc tiếp

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC

1
22 tháng 11 2019

1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath

a) Xét ∆ ABK và ∆IBK có:

+\(\widehat{ABK}=\widehat{KBI}\)(gt)

+BK chung

+\(\widehat{BAK}=\widehat{BIK}\left(=90^o\right)\)

\(\Rightarrow\)∆ABK=∆IBK(ch-gnhon)

b) Ta có: \(\left\{{}\begin{matrix}KI\perp BC\left(gt\right)\\AD\perp BC\left(gt\right)\end{matrix}\right.\)

Do đó: KI//AD

\(\Rightarrow\widehat{DAI}=\widehat{AIK}\)(2 góc SLT) (1)

Ta có ∆ABK=∆IBK(cmt)

nên KA=KI (2 cạnh tương ứng)

Xét ∆KAI cân tại K

\(\Rightarrow\widehat{KAI}=\widehat{KIA}\)(2 góc đáy) (2)

Từ (1) và (2)\(\Rightarrow\widehat{DAI}=\widehat{KAI}\Leftrightarrow\widehat{DAI}=\widehat{IAC}\)

=> AI là tia pgiac(đpcm)

 

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH...
Đọc tiếp

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?

Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH bằng tam giác MBH, tam giác ACE= tam giác AKE?

Bài 3: Cho tam giác ABC vuông tại C có góc A = 60* và đường phân gác của góc BAC cắt BC tại E. Kẻ EK vuông góc AB tại K (K thuộc AB).  Kẻ BD vuông góc với AE tại D (D thuộc AE). Chứng minh tam giác ACE = tam giác AKE

Bài 4: Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc BC tại H (H thuộc BC). Chứng minh tam giác ABE = tam giác HBE ?

0