K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )a,chứng minh rằng IA=IBb, Tính độ dài ICc, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IKBài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AEa, chứng minh rằng BE=CDb, chứng minh rằng góc ABE bằng góc ACDc, Gọi K là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )

a,chứng minh rằng IA=IB

b, Tính độ dài IC

c, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IK

Bài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AE

a, chứng minh rằng BE=CD

b, chứng minh rằng góc ABE bằng góc ACD

c, Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao?

Bài 3: Cho tam giác ABC vuông ở C, có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E kẻ CK vuông góc với AB (K thuộc AB) kẻ BD vuông góc với tia AE (D thuộc tia AE)chứng minh:

a, AC=AK và AE vuông góc CK

b,KB=KA

c, EB > AC

d, ba đường AC,BD,KE cùng đi qua 1 điểm

Bài 4: Cho tam giác nhọn ABC vẽ ra phía ngoài tam giác ABC các tam giác đều ABD và ACE .Gọi M là giao điểm của DC và BE Chứng minh rằng:

a, tam giác ABE=tam giác ADC

b,góc BMC=120°

Bài 5: Cho tam giác ABC vuông ở C ,có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E,kẻ EK vuông góc với AB( K thuộc AB)kẻ BD vuông góc với AE (D thuộc AE) chứng minh

a,AK=KB

b, AD=BC

2
12 tháng 5 2019

C1 :

Hình : tự vẽ 

a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C

                                       mà CI vuông góc vs AB => CI là đường cao của tam giác ABC 

=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )

=> IA=IB (đpcm)

12 tháng 5 2019

C1 : 

b) Có IA=IB ( cm phần a ) 

mà IA+IB = AB 

      IA + IA = 12 (cm)

=> IA = \(\frac{12}{2}=6\left(cm\right)\)

Xét tam giác vuông CIA có :     CI2  +   IA2  = CA2  ( Đ/l Py-ta -go )

                                                   CI2 +  62     = 102

                                                          CI2       = 102  - 6= 64

=> CI = \(\sqrt{64}=8\left(cm\right)\)

Vậy CI ( hay IC ) = 8cm

27 tháng 12 2016

a) Xet tam giac ABD va tam giac EBD co :

AB=BE (gt)

Goc B1=goc B2 ( BD la tia phan giac cua goc ABC)

BD chung

Suy ra tam giac ABD = tam giac EBD (c-g-c)

b) Goi I la giao diem cua AE va BD

Xet tam giac BAI va tam giac BEI co :

AB=BE(gt)

Goc B1=goc B2 ( BD la tia phan giac cua goc ABC)

AI chung

Suy ra tam giac BAI = tam giac BEI (c-g-c)

Suy ra goc I1=goc I2 ( hai goc tuong ung)

Ma goc I1+I2=180do ( hai goc ke bu)

Suy ra goc I1=goc I2=180 do:2=90 do (1)

Suy ra BI vuong goc voi AE ( dinh nghia) (2)

Tu (1) va (2) ta suy ra BD la duong trung truc cua AE

c) Tam giac ABD = tam giac EBD (cmt)

Suy ra goc BAD= goc BED ( hai goc tuong ung)

Ma goc BAD =90 do(gt)

Suy ra goc EBD=90 do

Suy ra ED vuong goc voi BC ( dinh nghia )

Ma AH vuong goc voi BC (gt)

Suy ra AH // DE ( theo quan he tu vuong goc den song song)

d) Tam giac ABC co:

Goc ABC + goc BAC +goc C=180 do ( dinh li tong ba goc trong tam giac)

Suy ra goc ABC=180 do -(goc BAC +goc C)

Hay goc ABC =180 do -(90 do+ goc C)(1)

Tam giac EDC co:

Goc EDC+ goc DEC + goc C=180 do ( dinh li tong ba goc trong tam giac)

Suy ra goc EDC=180 do -(goc DEC +goc C)

Hay goc EDC=180 do -(90 do + goc C)(2)

Tu (1) va (2) ta suy ra goc ABC= goc EDC (=180do-(90 do+goc C))

Nho mik nh ban !

27 tháng 12 2016

ghi ghi cái éo j thế phần d sai rồi

21 tháng 6 2020

a) Xét tam giác BAD và tam giác BED có :

BA = BE ( gt )

^ABD = ^EBD ( BD là tia phân giác của ^B )

BD chung 

=> Tam giác BAD = tam giác BED ( c.g.c )

=> AD = ED ( hai cạnh tương ứng )

=> ^BDA = ^BDE ( hai góc tương ứng )

mà ^BDA + ^BDE = 1800 ( kề bù )

=> ^BDA = ^BDE = 1800/2 = 900

=> BD vuông góc với AE ( đpcm )

b) BD vuông góc với AE

=> D thuộc AE

Lại có AD = ED

=> BD là đường trung trực của AE

21 tháng 6 2020

Giải

a) Xét 2 tam giác BAD và tam giác BED có:

   BD là cạnh chung

   BA = BE ( gt )

  Góc ABD = góc EBD ( gt )

Do đó : Tam giác BAD = tam giác BED (c.g.c )

=> góc BAD = góc BED ( hai cạnh tương ứng ) 

=> BED = 90° => DE vuông góc với BE

b) Theo câu a ta có : Tam giác BAD = tam giác BED => DA = DE nên D thuộc đừng trung trực của AE 

Mà BA = BE ( gt ) nên B thuộc đừng trung trực của AE 

Vậy BD là đường trung trực của AE  

Học tốt 

26 tháng 2 2020

a, xét  tam giác ABD và tam giác EBD có : BD chung

góc ABD = góc EBD do BD là pg của góc ABC (Gt)

BE = BA (gt)

=> tam giác ABD = tam giác EBD (c-g-c)

b, tam giác ABD = tam giác EBD (câu a)

=> DA = DE (đn)

và góc DAB = góc DEB (đn)

góc DAB = 90

=> góc DEB = 90

=> DE _|_ BC 

=> tam giác DEC vuông tại E (đn)

=> góc CDE + góc BCA = 90 (đl)

tam giác ABC vuông tại A (gt) => góc ABC + góc BCA = 90 (Đl)

=>  góc ABC = góc CDE

c, AH _|_ BC (Gt)

DE _|_ BC (câu b)

=> AH // DE (đl)

26 tháng 2 2020

B H E A D C

Mình vẽ hơi xấu mong bạn thông cảm:)

a) \(\Delta ABD\) và \(\Delta EBD\) có :

\(BE=BA\)

\(\widehat{ABD}=\widehat{EBD}\) ( vì BD là phân giác )

\(BC:\) cạnh chung

\(\Rightarrow\Delta ABD=\Delta EBD\left(c.g.c\right)\left(1\right)\)

b) Từ ( 1 ) => \(DA=DE\) và \(\widehat{BAD}=\widehat{BED}=90^0\)

Mặt khác , ta có : \(\widehat{ABC}=\widehat{BAC}-\widehat{C}=90^0-\widehat{C}\)

\(\widehat{EDC}=\widehat{DEC}-\widehat{C}=90^0-\widehat{C}\)

\(\Rightarrow\widehat{ABC}=\widehat{EDC}\)

c) Ta có : \(AH\perp BC\)\(DE\perp BC\) ( vì \(\widehat{DEC}=90^0\) ) nên AH//DE