K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C D E

Hình đây mọi người

7 tháng 3 2016

cho mình xin cách giải cụ thể nha 

10 tháng 11 2016

Ta có hình vẽ:

A B C I F E R 60

Vẽ IR là phân giác của BIC => BIR = CIR = \(\frac{BIC}{2}\)

Vì BI là phân giác của ABC nên ABI = CBI = \(\frac{ABC}{2}\)

CI là phân giác của BCA nên BCI = ACI = \(\frac{ACB}{2}\)

Δ ABC có: ABC + BAC + BCA = 180o

=> ABC + 60o + BCA = 180o

=> ABC + BCA = 180o - 60o = 120o

=> \(\frac{ABC}{2}+\frac{BCA}{2}=\frac{120^o}{2}=60^o\)

=> IBC + BCI = 60o

Xét Δ BIC có: BIC + IBC + BCI = 180o

=> BIC + 60o = 180o

=> BIC = 180o - 60o = 120o

=> \(\frac{BIC}{2}=\frac{120^o}{2}\)

=> BIR = RIC = 60o

Ta có: BIC + BIF = 180o (kề bù) (*)

=> 120o + BIF = 180o

=> BIF = 180o - 120o = 60o

Xét Δ BIF và Δ BIR có:

FBI = RBI (gt)

BI là cạnh chung

BIF = BIR = 60o

Do đó, Δ BIF = Δ BIR (g.c.g)

=> Δ BIF = Δ BIR (g.c.g)

=> IE = IR (2 cạnh tương ứng) (1)

Ta có: BIC + CIE = 180o (kề bù)

Kết hợp với (*) => BIF = CIE = 60o

Xét Δ ICR và Δ ICE có:

RCI = ECI (gt)

IC là cạnh cung

RIC = EIC = 60o

Do đó, Δ ICR = Δ ICE (g.c.g)

=> IR = IE (2 cạnh tương ứng)

Từ (1) và (2) => IF = IE (đpcm)

10 tháng 11 2016

tks

11 tháng 12 2020

Đang dùng điện thoại mà lười viết, bạn tham khảo tạm nha. 

b/ Xét ∆ABC có

^A+^ABC+^ACB=180° (đ.l tổng 3 góc)

=> ^ABC + ^ACB = 120°

=> ^ABC/2 + ^ACB/2 = 60°

=> ^CBD + ^BCE = 60°

=> ^CBI + ^BCI = 60°

=> ^BIC = 180° - 60° = 120°

a, Kẻ IF là pg ^BIC. (F thuộc BC)

=> ^BIF = ^CIF = 60°

Mà ^EIB + ^BIC = 180°

=> ^EIB =60°

=> ^EIB = ^DIC = 60° (đối đỉnh)

=> ^EIB = ^BIF = ^FIC = ^DIC = 60°

Khi đó

∆EIB = ∆FIB (g.c.g) (bạn tự xét => BE = FB

∆FIC = ∆DIC (c.g.c) (tự xét) => FC = DC

Do đó

BE +  CD = BF + CF = BC

 

Xét ΔIDE có \(\widehat{IDE}=\widehat{IED}\)

nên ΔIDE cân tại I

hay ID=IE

30 tháng 11 2016

A B 60 C o I O D E x y

a)\(\Delta ABC\)có \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^o\) (tổng 3 góc trong tam giác)

=>\(60^o+\widehat{ABC}+\widehat{ACB}=180^o\)=>\(\widehat{ABC}+\widehat{ACB}=120^o\)

BD là tia phân giác của góc ABC => \(\widehat{ABD}=\widehat{DBC}=\frac{1}{2}.\widehat{ABC}\)

CE là tia phân giác của góc ACB => \(\widehat{ACE}=\widehat{ECB}=\frac{1}{2}.\widehat{ACB}\)

=>\(\widehat{DBC}+\widehat{ECB}=\frac{1}{2}.\widehat{ABC}+\frac{1}{2}.\widehat{ACB}=\frac{1}{2}\left(\widehat{ABC}+\widehat{ACB}\right)=\frac{1}{2}.120=60^o\)

\(\Delta BOC\) có: \(\widehat{DBC}+\widehat{BOC}+\widehat{ECB}=180^o\) (tổng 3 góc trong tam giác)

=>\(\widehat{BOC}+60^o=180^o\Rightarrow\widehat{BOC}=120^o\)

b) Góc ngoài tại đỉnh B của tam giác ABC kề bù với góc ABC <=>\(\widehat{ABC}+\widehat{CBx}=180^o\)

Góc ngoài tại đỉnh C của tam giác ABC kề bù với góc ACB<=>\(\widehat{ACB}+\widehat{BCy}=180^o\)

=>\(\widehat{ABC}+\widehat{CBx}+\)\(\widehat{ACB}+\widehat{BCy}=360^o\)=>\(\widehat{CBx}+\widehat{BCy}+120^o=360^o\)

=>\(\widehat{CBx}+\widehat{BCy}=240^o\)

BI là tia phân giác của góc CBx => \(\widehat{BCI}=\widehat{IBx}=\frac{1}{2}.\widehat{CBx}\)

CI là tia phân giác của góc BCy => \(\widehat{BCI}=\widehat{ICy}=\frac{1}{2}.\widehat{BCy}\)

=>\(\widehat{CBI}+\widehat{BCI}=\frac{1}{2}.\widehat{CBx}+\frac{1}{2}.\widehat{BCy}=\frac{1}{2}\left(\widehat{CBx}+\widehat{BCy}\right)=\frac{1}{2}.240^o=120^o\)

\(\Delta BCI\) có: \(\widehat{CBI}+\widehat{BCI}+\widehat{BIC}=180^o\) (tổng 3 góc trong tam giác)

=>\(120^o+\widehat{BIC}=180^o\Rightarrow\widehat{BIC}=60^o\)

Vậy ............................

16 tháng 12 2016

Gọi IK là đường phân giác của \(BIC\)^

Ta có:B^+C^=180-A^=120

\(\Rightarrow DBC\)^+ECB^=120:2=60

\(\Rightarrow\)BIC^=180-60=120

\(\Rightarrow\)BIE^=180-BIC^=180-120=60(kề bù)

Mà BIC^=120\(\Rightarrow\)BIK^=60

Xét t/g BIK và t/g BIE có:

BIE^=BIK^,IBK^=IBE^,BI chung

\(\Rightarrow\)t/g BIK=t/g BIE(g.c.g)

\(\Rightarrow IE=IK\)

Chứng minh tương tự \(\Rightarrow ID=IK\)

\(\Rightarrow ID=IE\)

 

16 tháng 12 2016

Tự vẽ hình

Gọi IK là đường phân giác của góc BIC.
 
Lại có: B^+C^=180∘−A^=180∘−60∘=120∘
 
⇒2B1^+2C1^=120∘⇒B1^+C1^=60∘⇒BIC^=180∘−60∘=120∘
 
Khi đó I1^=I2^=I3^=I4^=60∘
 
Ta có: B1^=B2^;I1^=I2^;BI: cạnh chung
 
⇒ΔBIE=ΔBIK(g.c.g)⇒IK=IE
 
Chứng minh tương tự: ID=IK
 
Do đó ID=IE