Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ:
A B C I F E R 60
Vẽ IR là phân giác của BIC => BIR = CIR = \(\frac{BIC}{2}\)
Vì BI là phân giác của ABC nên ABI = CBI = \(\frac{ABC}{2}\)
CI là phân giác của BCA nên BCI = ACI = \(\frac{ACB}{2}\)
Δ ABC có: ABC + BAC + BCA = 180o
=> ABC + 60o + BCA = 180o
=> ABC + BCA = 180o - 60o = 120o
=> \(\frac{ABC}{2}+\frac{BCA}{2}=\frac{120^o}{2}=60^o\)
=> IBC + BCI = 60o
Xét Δ BIC có: BIC + IBC + BCI = 180o
=> BIC + 60o = 180o
=> BIC = 180o - 60o = 120o
=> \(\frac{BIC}{2}=\frac{120^o}{2}\)
=> BIR = RIC = 60o
Ta có: BIC + BIF = 180o (kề bù) (*)
=> 120o + BIF = 180o
=> BIF = 180o - 120o = 60o
Xét Δ BIF và Δ BIR có:
FBI = RBI (gt)
BI là cạnh chung
BIF = BIR = 60o
Do đó, Δ BIF = Δ BIR (g.c.g)
=> Δ BIF = Δ BIR (g.c.g)
=> IE = IR (2 cạnh tương ứng) (1)
Ta có: BIC + CIE = 180o (kề bù)
Kết hợp với (*) => BIF = CIE = 60o
Xét Δ ICR và Δ ICE có:
RCI = ECI (gt)
IC là cạnh cung
RIC = EIC = 60o
Do đó, Δ ICR = Δ ICE (g.c.g)
=> IR = IE (2 cạnh tương ứng)
Từ (1) và (2) => IF = IE (đpcm)
Đang dùng điện thoại mà lười viết, bạn tham khảo tạm nha.
b/ Xét ∆ABC có
^A+^ABC+^ACB=180° (đ.l tổng 3 góc)
=> ^ABC + ^ACB = 120°
=> ^ABC/2 + ^ACB/2 = 60°
=> ^CBD + ^BCE = 60°
=> ^CBI + ^BCI = 60°
=> ^BIC = 180° - 60° = 120°
a, Kẻ IF là pg ^BIC. (F thuộc BC)
=> ^BIF = ^CIF = 60°
Mà ^EIB + ^BIC = 180°
=> ^EIB =60°
=> ^EIB = ^DIC = 60° (đối đỉnh)
=> ^EIB = ^BIF = ^FIC = ^DIC = 60°
Khi đó
∆EIB = ∆FIB (g.c.g) (bạn tự xét => BE = FB
∆FIC = ∆DIC (c.g.c) (tự xét) => FC = DC
Do đó
BE + CD = BF + CF = BC
Xét ΔIDE có \(\widehat{IDE}=\widehat{IED}\)
nên ΔIDE cân tại I
hay ID=IE
A B 60 C o I O D E x y
a)\(\Delta ABC\)có \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^o\) (tổng 3 góc trong tam giác)
=>\(60^o+\widehat{ABC}+\widehat{ACB}=180^o\)=>\(\widehat{ABC}+\widehat{ACB}=120^o\)
BD là tia phân giác của góc ABC => \(\widehat{ABD}=\widehat{DBC}=\frac{1}{2}.\widehat{ABC}\)
CE là tia phân giác của góc ACB => \(\widehat{ACE}=\widehat{ECB}=\frac{1}{2}.\widehat{ACB}\)
=>\(\widehat{DBC}+\widehat{ECB}=\frac{1}{2}.\widehat{ABC}+\frac{1}{2}.\widehat{ACB}=\frac{1}{2}\left(\widehat{ABC}+\widehat{ACB}\right)=\frac{1}{2}.120=60^o\)
\(\Delta BOC\) có: \(\widehat{DBC}+\widehat{BOC}+\widehat{ECB}=180^o\) (tổng 3 góc trong tam giác)
=>\(\widehat{BOC}+60^o=180^o\Rightarrow\widehat{BOC}=120^o\)
b) Góc ngoài tại đỉnh B của tam giác ABC kề bù với góc ABC <=>\(\widehat{ABC}+\widehat{CBx}=180^o\)
Góc ngoài tại đỉnh C của tam giác ABC kề bù với góc ACB<=>\(\widehat{ACB}+\widehat{BCy}=180^o\)
=>\(\widehat{ABC}+\widehat{CBx}+\)\(\widehat{ACB}+\widehat{BCy}=360^o\)=>\(\widehat{CBx}+\widehat{BCy}+120^o=360^o\)
=>\(\widehat{CBx}+\widehat{BCy}=240^o\)
BI là tia phân giác của góc CBx => \(\widehat{BCI}=\widehat{IBx}=\frac{1}{2}.\widehat{CBx}\)
CI là tia phân giác của góc BCy => \(\widehat{BCI}=\widehat{ICy}=\frac{1}{2}.\widehat{BCy}\)
=>\(\widehat{CBI}+\widehat{BCI}=\frac{1}{2}.\widehat{CBx}+\frac{1}{2}.\widehat{BCy}=\frac{1}{2}\left(\widehat{CBx}+\widehat{BCy}\right)=\frac{1}{2}.240^o=120^o\)
\(\Delta BCI\) có: \(\widehat{CBI}+\widehat{BCI}+\widehat{BIC}=180^o\) (tổng 3 góc trong tam giác)
=>\(120^o+\widehat{BIC}=180^o\Rightarrow\widehat{BIC}=60^o\)
Vậy ............................
Gọi IK là đường phân giác của \(BIC\)^
Ta có:B^+C^=180-A^=120
\(\Rightarrow DBC\)^+ECB^=120:2=60
\(\Rightarrow\)BIC^=180-60=120
\(\Rightarrow\)BIE^=180-BIC^=180-120=60(kề bù)
Mà BIC^=120\(\Rightarrow\)BIK^=60
Xét t/g BIK và t/g BIE có:
BIE^=BIK^,IBK^=IBE^,BI chung
\(\Rightarrow\)t/g BIK=t/g BIE(g.c.g)
\(\Rightarrow IE=IK\)
Chứng minh tương tự \(\Rightarrow ID=IK\)
\(\Rightarrow ID=IE\)
Tự vẽ hình