K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2016

A B C E M 1 2 Xét tam giác BAE và tam giác BME có
BA = BM ( GT)
Góc \(B_1\) = Góc \(B_2\) ( Vì BE là phân giác )
BE chung
Suy ra tam giác BAE = tam giác BME
=> Góc BME = Góc BAE =90 độ
Hay EM vuông góc với BC

6 tháng 3 2018

A B C E M

a)   XÉT\(\Delta ABE\)VÀ \(\Delta MBE\)

     AB=BM

    BE  chung             =>\(\Delta ABE=\Delta MBE\left(c-g-c\right)\)

     ^ABE=^MBE        

b)   =>  ^A=^EMB=\(90^0\)

      \(\Rightarrow EM\perp BC\)

c)    Ta  có ^A  + ^ABC  +  ^C  =\(180^0\) 

   =>^ABC  = \(180^0-\)^A   --  ^C  =  \(90^0-\)^C    (1)

    Ta lại có ^EMC  +  ^MEC  +  ^C  =\(180^0\)

   => ^MEC  =\(180^0-\)^EMC  --  ^C  =\(90^0-\)  ^C   (2) 

Từ (1) và (2) =>  ^ABC=^MEC

A B C E M

a) Xét \(\Delta BEA\)và \(\Delta BEM\)có:

\(BA=BM\left(gt\right)\)

\(\widehat{ABE}=\widehat{MBE}\)( do BE là tia phân giác \(\widehat{ABC}\))

BE là cạnh chung

\(\Rightarrow\Delta BEA=\Delta BEM\left(c.g.c\right)\)

b) Vì \(\Delta BEA=\Delta BEM\left(cmt\right)\)

\(\Rightarrow\widehat{BAE}=\widehat{BME}\left(=90^0\right)\)

\(\Rightarrow EM\perp BC\)

c) Theo định lý tổng 3 góc trong 1 tam giác ta có:

\(\hept{\begin{cases}\widehat{MEC}+\widehat{ECM}+\widehat{EMC}=180^0\\\widehat{BAC}+\widehat{ABC}+\widehat{BCA}=180^0\end{cases}}\)

Mà \(\widehat{BAC}=\widehat{EMC}\left(=90^0\right)\)

\(\Rightarrow\widehat{ABC}=\widehat{MEC}\)

12 tháng 12 2017

ta có :

góc BME+góc EMC= 180*(kề bù)

=>90*+EMC=180*

=>EMC=90*

Mặt khác:

ABC=90*-C

Ta Có

EMC+MCE+MEC=180*

=> 90*+MCE+MEC=180*

=>C+MEC=90*

=>MEC=90*-C

=>ABC=MEC=90*-C

Vậy ABC=MEC

31 tháng 12 2017

Bai de

24 tháng 12 2016

a,

xét tg bea và tg bem có

be chung

góc b1= góc b2[gt]

ba=bm[gt]

suy ra tg bea = tg bem[c.g.c]

b,

vì tg bea = tg bem[cmt]

suy ra góc a = góc m[tương ứng]

mà a = 90 độ

suy ra góc m = 90 độ 

suy ra em vg góc bc

c,

tớ đoán là bằng nhau nhưng chưa biết cách tính

12 tháng 12 2017

a) Xét tam giác BEA và tam giác BEM ta có:

BA=BM (gt)

góc ABE=góc MBE (gt)

BE là cạnh chung

=> tam giác BEA=tam giác BEM ( c-g-c)

b) Vì tam giác BEA= tam giác BEM

=> góc BME= góc BAE (góc tương ứng)

=>góc BME= 90* (góc BAE=90*)

=>EM vuông góc BC

c) ta có :

góc BME+góc EMC= 180*(kề bù)

=>90*+EMC=180*

=>EMC=90*

Mặt khác:

ABC=90*-C

Ta Có

EMC+MCE+MEC=180*

=> 90*+MCE+MEC=180*

=>C+MEC=90*

=>MEC=90*-C

=>ABC=MEC=90*-C

Vậy ABC=MEC

6 tháng 9 2019

๖ۣۜVᶖệᵵ‿₳ᵰħ²ᴷ⁷《ღᵯįᵰ ღ》《Team BÁ ĐẠO.COM. LẬP KỈ LỤCC KHI HIẾP DÂM 300 NG CON GÁI

7 tháng 9 2019

HAI ANH CHỊ NÀY MỚI 2K6 NEK . IU NHAU LẮM ĐÓ CHO NÊN ĐG LÀM PHIỀN HỌ

https://olm.vn/thanhvien/nhu140826 VÀ https://olm.vn/thanhvien/trungkienhy79

a: Xét ΔBEA và ΔBEM có

BE chung

\(\widehat{ABE}=\widehat{MBE}\)

BA=BM

Do đó: ΔBEA=ΔBEM

b: Ta có: ΔBEA=ΔBEM

nên \(\widehat{BAE}=\widehat{BME}=90^0\)

hay EM⊥BC

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng


Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF


Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE


Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0