Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC vuông tại A( AB<AC ), có đường cao AH, trung tuyến AM Gọi E và F lần lượt la hình chiếu của H lên AB và AC; I và K lần lượt là trung điểm của HB và HC. CM :
a, bc^2 = ab^2 +ac^2
<=.> (ae+eb)^2 +(af+fc)^2
<=.>AE^2 +2 AE.EB +EB^2 +AF^2+FC^2+2AF,FC
<=> EF^2 +EB^2 +CF^2 +2.(EH^2+FH^2)
<=>EB^2 +CF^2 + AH ^2 + 2 AH^2 vì tứ giác EHAF là hcn suy ra AH =EF
<=>EB^2 +CF^2+3 AH^2 (đpcm)
b, cb =2a là thế nào vậy
a}\(\frac{AC^2}{AB^2}=\frac{DC.BC}{BD.BC}=\frac{DC}{BD}\Rightarrow\frac{AC^4}{AB^4}=\frac{DC^2}{BD^2}=\frac{CF.AC}{BE.AB}\Rightarrow\frac{AC^3}{AB^3}=\frac{CF}{BE}\)
b}tứ giác AFDE là hình chữ nhật
=>AH=EF
=>AH2=EF2=ED2+FD2
3AH2+BE2+CF2=2AH2+BE2+CF2+ED2+FD2=2AH2+BD2+DC2=AH2+BD2+AH2+DC2=AB2+AC2=BC2
theo dinh ly pita go
Ta có AH=DE ( vì ADHE là hcn)
mà AH2=BH.BC
=> AH4=HB2.HC2=BD.CE.BC.BA
=> AH3=BD.CE.BC
a: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đườg cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(HB\cdot HC=AH^2\left(3\right)\)
Từ (1), (2) và (3) suy ra \(AD\cdot AB=AE\cdot AC=HB\cdot HC\)
b: \(DA\cdot DB+EA\cdot EC\)
\(=HD^2+HE^2\)
\(=DE^2=AH^2\)
c: \(AE\cdot AB+AD\cdot AC\)
\(=\dfrac{AH^2}{AC}\cdot AB+\dfrac{AH^2}{AB}\cdot AC\)
\(=AH^2\left(\dfrac{AB}{AC}+\dfrac{AC}{AB}\right)=AH^2\cdot\dfrac{AB^2+AC^2}{AB\cdot AC}\)
\(=\dfrac{AH^2\cdot BC^2}{AH\cdot BC}=AH\cdot BC\)
\(=AB\cdot AC\)