Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D H E F K
Xét tam giác ABC có : góc ABC + góc ACB + góc BAC = 180 (đl)
góc BAC = 80(Gt); góc ABC = 60 (gt)
=> góc ACB = 180 - 80 - 60 = 40
=> góc ACB < góc ABC < góc BAC ; tam giác ABC
=> AB < AC < BC (đl)
b, xét tam giác ABE và tam giác DBE có : BE chung
AB = BD (gt)
góc ABE = góc DBE do BE là phân giác của góc ABC (gt)
=> tam giác ABE = tam giác DBE (c-g-c)
c, xét tam giác BAD có : AB = BD (gt) => tam giác BAD cân tại B (đn)
mà góc ABC = 60 (gt)
=> tam giác BAD đều (tc)
=> AD = AB (Đn)
BE là phân giác của góc ABC (Gt) => góc ABE = 1/2.góc ABC mà góc ABC = 60 (gt)
=> góc ABE = 12.60 = 30
Xét tam giác ABE có : góc ABE + góc AEB + góc BAE = 180 (đl)
góc BAE = 80 (gt)
=> góc AEB = 180 - 80 - 30 = 70
=> góc AEB < góc BAE ; tam giác BAE
=> AB < BE hay AD < BE (đl)
d, không biết
Góc B=60 độ thì tổng 2 góc A và C là: 180 độ - 60 độ = 120 độ
ta có:
A+C=120 độ
A lớn hơn C => A+A>A+C
2A > 120 độ
A lớn hơn 60 độ hay A lớn hơn B
=> C bé hơn 60 độ hay C lớn hơn B
ta có: A>B>C thì BC>AC>AB(quan hệ cạnh và góc đối diện)
a) +Xét tam giác ABD :
ta có góc B = 60* ,góc BAD = 60*
mà góc B + góc BAD + ADB = 180* ( tổng 3 góc )
=> góc ADB = 60*
=> tam giac ABD là tam giác đều ( mỗi góc = 60*) => AB = BD = AD = 7cm
ta có H là trung diem BD => AH là duong trung tuyến,là tia phan giac goc BAD,là duong cao cùa tam giac ABD ( tam giac ABD đều ) => HD = HB = 1/2 BD = 3.5cm
+áp dụng định lí pitago vào tam giác ABH vuong tai H có AB = 7cm,BH = 3.5 cm :
AB^2 = AH^2 + BH^2 => em tự tính AH nhé
+ta có BH + HC = BC => HC = BC - HB = 15 - 3.5 = 11.5cm
+áp dụng dinh li pitago vào tam giac vuong AHC vuong tai H có AH ( lúc nãy tính ) và HC = 11.5cm
AC^2 =AH^2 + HC^2 => AC =13cm
b) AB ^2 + AC^2 có = BC ^2 ko? nếu = thì tam giac ABC vuong tai A
a, Áp dụng định lý tổng ba góc cho tam giác abc, ta có:
a+b+c=180
thay: 100+20+c=180
suy ra: c=180-(100+20)=60
áp dụng đ/l cạnh đối diện vs góc lớn hơn, ta có:
a>c>b suy ra: bc>ab>ac
b, theo câu a, ta có:
ab>ac
mà:ah vuông góc vs ac
suy ra: hc là hình chiếu của ac
hb là hình chiếu của ab
do đó: hb>hc( t/c đường xiên và hình chiếu của chúng)
- các bạn ơi 1 like nha
Vì tam giác ABC vuông tại A nên A = 90o
Ta có: Góc A + B + C = 180o
=> Góc C = 180o - (A + B)
= 180o - (90o + 60o) = 180o - 150o = 30o
Vì góc A > góc B > góc C (90o > 60o > 30o)
Nên BC > AC > AB (mối quan hệ giữa góc và cạnh đối diện)
Bạn tự vẽ hình nha!
a) A + B + C = 180 ĐỘ (tổng 3 góc tam giác ABC)
A + 60 + C = 180
A + C = 180 - 60 = 120
2C + C = 120
3C =120
C = 120 : 3 = 40 => A =80
ta có : góc C < góc B < góc A (40 < 60 < 80)
Vậy AB < AC < BC (quan hệ giữa góc và cạnh đối diện trong tam giác BC)
b) Xét tam giác BHC vuông tại H
=> góc HBC + góc C =90 độ
HBC + 40 =90
HBC = 90 - 40 =50
C < HBC (40 < 50) => HB < HC (1) ( quan hệ giữa góc và cạnh đối diện trong tam giác BHC)
Ta có :
ABH + HBA = ABC ( tia BH nằm giữa 2 tia BA và BC)
ABH + 50 = 60
ABH = 60 - 50 = 10
ABH < A (10 < 80) nên HA < HB (2) (quan hệ giữa góc và cạnh đối diện trong tam giác AHB)
Từ (1) và (2), => HA < HC
c) Tam giác ABM và tam giác CEM có
AM = CM ( đường trung tuyến BM)
góc AMB = góc CMB (2 góc đối đỉnh)
BM = EM (gt)
=> tam giác ABM = tam giác CEM (c.g.c)
=> AB = CE (yếu tố tương ứng) (đpcm)
Xét tam giác BEC , ta có :
BE < BC + CE
2BM < BA + AB ( đpcm)
Xét \(\Delta ABC\)có :
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
=> \(\widehat{C}=40^o\)
Áp dụng bất đẳng thức trong tam giác ta có
AB<AC<BC ( 40o<600<800)
Xét tam giác ABC, ta có:
\(\widehat{A}\) +\(\widehat{B}\) +\(\widehat{C}\) = 180 độ ( ĐL Pytago )
=> \(\widehat{C}\) = 180 -(\(\widehat{B}\) + \(\widehat{A}\) )
=180- (60+80) = 180 - 140 = 40độ
Xét tam giác ABC, ta có: \(\widehat{A}\) >\(\widehat{B}\) >\(\widehat{C}\) ( 80>60>40)
=> BC>AC>AB (t/c góc và cạnh đối diện trog tam giác)