Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1.
Gọi DI là trung trực BC
Xét ΔBIDvà ΔCID:
IDchung
\(\widehat{BDI}=\widehat{CDI}=90^o\)(ID trung trực BC)
BD = CD(như trên)
⇒ΔBID = ΔCID (c.g.c )
⇒ \(\widehat{IBD}=\widehat{C}\)(2gtu)
\(\widehat{B}-\widehat{C}\) = 40
hay \(\widehat{B}-\widehat{IBD}\) = 40
Mà\(\widehat{IBD}+\widehat{ABI}=B\)
\(\Rightarrow\widehat{ABI}=\widehat{B}-\widehat{IBD}=40^o\)
????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
Tự vẽ hình nha ^^
a, Ta có: tam giác ABC cân tại A có AO là đường trung trực (gt)
=> AO cũng là phân giác của góc BAC
=> góc OAB = góc OAC (1)
Gọi OD là đường trung trực của AC
Xét tam giác AOC có OD vừa là đường cao vừa là trung tuyến => AOC cân tại O
=> góc OAC = góc OCA (2)
Từ (1), (2) => đpcm
b, Theo câu a: tam giác AOC cân tại O
=> OA = OC (3)
Và MA = CN (gt) (4)
Mặt khác: góc MAC = góc ABC + góc ACB (góc ngoài)
=> góc MAO = góc MAC + góc OAC = góc ABC + góc ACB + góc OAC (*)
Góc BCN = góc BAC + góc ABC (góc ngoài)
=> góc OCN = góc BCN + góc OCB = góc BAC + góc ABC + góc ACB - góc OCA
<=> góc OCN = góc ABC + góc ACB + (góc BAC - góc OAB) (góc OAB = góc OCA théo câu a)
<=> góc OCN = góc ABC + góc ACB + góc OAC (**)
Từ (*), (**) => góc MAO = góc OCN (5)
Từ (3), (4), (5) => tam giác OAM = tam giác OCN (c-g-c)
UhkbijhihguhftfWegvhhhhvhiggyghkbhijmkjiphfuhfygggubh