Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Lê Thu Phương Anh - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
a) tu ve
b) xét tam giác AHB và tam giác DBH ta có:
AH=BD (gt ) BH=BH ( canh chung ) goc AHB= goc HBD (=90)
--> 2 tam giac = nhau theo th (c=g=c)
c) ta co goc ABH= goc BHD ( tam giac AHB= tam giac DBH)
ma goc ABH va goc BHD nam o vi tri so le trong
nen AB//HD
d)xet tam giac BAO va tam giac HDO ta co
AB=DH ( tam giac ABH= tam giac DBH)
goc OBA= goc OHD (2 goc so le trong va AB//HD)
goc OAB= goc ODH ( 2 goc so le trong va AB//HD)
--> 2 tam giac = nhau ( g=c=g)
--> BO= OH ( 2 canh tuong ung )
--> O la trung diem BH ( O thuoc BH)
d)ta co : goc BDH= goc BAH ( tam giac BDH= tam giac AHB )
ma goc BDH = 35 ( gt)
nen goc BAH=35
ta co:
goc BAH+ goc HAC=90 ( 2 goc ke phu)
goc HAC+goc ACB=90 ( tam giac AHC vuong tai H )
--> goc BAH= goc ACB
--> goc ACB=45
a) tu ve
b) xét tam giác AHB và tam giác DBH ta có:
AH=BD (gt ) BH=BH ( canh chung ) goc AHB= goc HBD (=90)
--> 2 tam giac = nhau theo th (c=g=c)
c) ta co goc ABH= goc BHD ( tam giac AHB= tam giac DBH)
ma goc ABH va goc BHD nam o vi tri so le trong
nen AB//HD
d)xet tam giac BAO va tam giac HDO ta co
AB=DH ( tam giac ABH= tam giac DBH)
goc OBA= goc OHD (2 goc so le trong va AB//HD)
goc OAB= goc ODH ( 2 goc so le trong va AB//HD)
--> 2 tam giac = nhau ( g=c=g)
--> BO= OH ( 2 canh tuong ung )
--> O la trung diem BH ( O thuoc BH)
d)ta co : goc BDH= goc BAH ( tam giac BDH= tam giac AHB )
ma goc BDH = 35 ( gt)
nen goc BAH=35
ta co:
goc BAH+ goc HAC=90 ( 2 goc ke phu)
goc HAC+goc ACB=90 ( tam giac AHC vuong tai H )
--> goc BAH= goc ACB
--> goc ACB=45
Xét tam giác AHB và tam giác DBH có:
AH = DB (gt)
AHB = DBH (= 900)
BH chung
=> Tam giác AHB = Tam giác DBH (c.g.c)
=> ABH = DHB (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong
=> AB // DH
AH _I_ BC
BD _I_ BC
=> AH // BD
Xét tam giác HAO và tam giác BDO có:
OHA = OBD (= 900)
HA = BD (gt)
HAO = BDH (2 góc so le trong, HA // BD)
=> Tam giác HAO = Tam giác BDO (g.c.g)
=> OA = OD (2 cạnh tương ứng)
OH = OB (2 cạnh tương ứng)
a) \(\Delta AHN=\Delta DBH\left(C-G-C\right)\)
b) AHDB là hình bình hành => AB//HD
c) I là giao điểm 2 đường chéo trong hình bình hành => IB=IH
a
XÉT ΔAHB VÀ ΔDBH
BH- CẠNH CHUNG
^AHB=^DBH
AH=BD
=>ΔAHB = ΔDBH (CGC)
B) VÌ ΔAHB = ΔDBH
=> ^ABH=^DHB
MÀ 2 GÓC NÀY Ở T SO LE TRONG CỦA AB VÀ HD
=>AB//HD
C)
VÌ ΔAHB = ΔDBH
=>AB=DH (2CTU)
=>AC=BD(2CTU)
XÉT TAM GIÁC BAD VÀ TAM GIÁC HAD P/S : CÓ AI ĐỂ Ý 2 TỪ TA BAD VÀ HADKO ;V
AB=DH
AC=BD
AD-CẠNH CHUNG
=>TAM GIÁC BAD = TAM GIÁC HAD
=>^BAD=^HDA
=> ^BAO=^ODH
XÉT TAM GIÁC BAO VÀ TAM GIÁC HDO
^BAD=^HDA
AB=HD
^BAO=^ODH
=> TAM GIÁC BAO = TAM GIÁC HDO
=> BO=HO (2CTU)
=> O là trung điểm của BH