Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC cân tại A, có ∠A = 20◦ , độ dài BC = a, AC = AB = b. Chứng minh rằng a3 + b3 = 3ab2
a}\(\frac{AC^2}{AB^2}=\frac{DC.BC}{BD.BC}=\frac{DC}{BD}\Rightarrow\frac{AC^4}{AB^4}=\frac{DC^2}{BD^2}=\frac{CF.AC}{BE.AB}\Rightarrow\frac{AC^3}{AB^3}=\frac{CF}{BE}\)
b}tứ giác AFDE là hình chữ nhật
=>AH=EF
=>AH2=EF2=ED2+FD2
3AH2+BE2+CF2=2AH2+BE2+CF2+ED2+FD2=2AH2+BD2+DC2=AH2+BD2+AH2+DC2=AB2+AC2=BC2
theo dinh ly pita go
D A C B b c a b/2
Ta có: \(\widehat{CAB}=120^o\Rightarrow\widehat{CAD}=60^o\)
\(\Rightarrow\Delta DAC\) là nửa tam giác đều.
\(\Rightarrow AD=\frac{AC}{2}=\frac{b}{2}\)
Xét \(\Delta CDB\) vuông tại D có:
\(CB^2=CD^2+DB^2=\left(AC^2-AD^2\right)+\left(AD+AB\right)^2\)
\(\Leftrightarrow CB^2=AC^2-AD^2+AD^2+2AD.AB+AB^2=AC^2+2AB.\frac{AC}{2}+AB^2\)
\(\Leftrightarrow a^2=b^2+c^2+bc\)
a, bc^2 = ab^2 +ac^2
<=.> (ae+eb)^2 +(af+fc)^2
<=.>AE^2 +2 AE.EB +EB^2 +AF^2+FC^2+2AF,FC
<=> EF^2 +EB^2 +CF^2 +2.(EH^2+FH^2)
<=>EB^2 +CF^2 + AH ^2 + 2 AH^2 vì tứ giác EHAF là hcn suy ra AH =EF
<=>EB^2 +CF^2+3 AH^2 (đpcm)
b, cb =2a là thế nào vậy
Ai tick mik với, từ chiều đến giờ mik chỉ mới được 6 ****