Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có góc A+góc B+góc C=180 độ
=>góc A=180 độ-30 độ-20 độ=130 độ
Xét ΔABC có BC/sinA=AC/sinB=AB/sinC
=>AC/sin30=AB/sin20=30/sin130
=>\(AC\simeq19,58\left(cm\right);AB\simeq13,39\left(cm\right)\)
ΔAHB vuông tại H có sin B=AH/AB
=>AH/13,39=1/2
=>AH=6,695(cm)
b: Xét ΔABC có AD là phân giác
nên AB/AC=BD/DC
=>\(\dfrac{BD}{DC}=\dfrac{13.39}{19.58}\)
=>\(\dfrac{BD}{13.39}=\dfrac{CD}{19.58}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{13.39}=\dfrac{CD}{19.58}=\dfrac{BD+CD}{13.39+19.58}=\dfrac{30}{32.97}=\dfrac{1000}{1099}\)
=>\(BD\simeq12,18\left(cm\right);CD\simeq17,82\left(cm\right)\)
BÀI 1:
a)
· Trong ∆ ABC, có: AB2= BC.BH
Hay BC= =
· Xét ∆ ABC vuông tại A, có:
AB2= BH2+AH2
↔AH2= AB2 – BH2
↔AH= =4 (cm)
b)
· Ta có: HC=BC-BH
àHC= 8.3 - 3= 5.3 (cm)
· Trong ∆ AHC, có:
·
Bài 1:
A B C H E
a) Áp dụng hệ thức lượng ta có:
\(AB^2=BH.BC\)
\(\Rightarrow\)\(BC=\frac{AB^2}{BH}\)
\(\Rightarrow\)\(BC=\frac{5^2}{3}=\frac{25}{3}\)
Áp dụng Pytago ta có:
\(AH^2+BH^2=AB^2\)
\(\Rightarrow\)\(AH^2=AB^2-BH^2\)
\(\Rightarrow\)\(AH^2=5^2-3^2=16\)
\(\Rightarrow\)\(AH=4\)
b) \(HC=BC-BH=\frac{25}{3}-3=\frac{16}{3}\)
Áp dụng hệ thức lượng ta có:
\(\frac{1}{HE^2}=\frac{1}{AH^2}+\frac{1}{HC^2}\)
\(\Leftrightarrow\)\(\frac{1}{HE^2}=\frac{1}{4^2}+\frac{1}{\left(\frac{16}{3}\right)^2}=\frac{25}{256}\)
\(\Rightarrow\)\(\frac{1}{HE}=\frac{5}{16}\)
\(\Rightarrow\)\(HE=\frac{16}{5}\)
ABCEHD
+) Kẻ AE là phân giác ngoài của góc BAC
Mà AD là phân giác của góc BAC nên AD vuông góc với AE => tam giác EAD vuông tại A
+) Áp dụng ĐL Pi - ta go trong tam giác vuông AHD có: DH = √AD2−AH2=√452−362=27 cm
+) Áp dụng hệ thức lượng trong tam giác vuông EAD có: AD2 = DH. DE => DE = AD2 / DH = 452/ 27 = 75 cm
+)Áp dụng tính chất tia phân giác trong và ngoài tam giác có: BDDC =ABAC =EBEC
Đặt BD = x (0 < x < 40) => CD = 40 - x. Ta có:
x40−x =75−x75+(40−x) (do EB = DE - BD; EC = DE + DC)
=> x. (115 - x) = (40 - x).(75 - x)
<=> 115x - x2 = 3000 - 115x + x2 <=> x2 - 115x + 1500 = 0
=> x = 100 (Loại) hoặc x = 15 (thoả mãn)
Vậy BD = 15 cm hoặc BD = 40 - 15 = 25 cm (Nếu ta đổi vị trí B và C cho nhau)
A B C H 12
a, Áp dụng định lí Pytago cho tam giác ABC vuông tại A
\(AB^2+AC^2=BC^2\Rightarrow BC^2=\left(\frac{3}{5}BC\right)^2+AC^2\)
\(\Leftrightarrow AC^2=\frac{16}{25}BC^2\Leftrightarrow AC=\frac{4}{5}BC\)
* Áp dụng hệ thức :
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{144}=\frac{1}{\frac{9}{25}BC^2}+\frac{1}{\frac{16}{25}BC^2}\)
\(\Leftrightarrow\frac{1}{144}=\frac{\frac{16}{25}BC^2+\frac{9}{25}BC^2}{\frac{16}{25}BC^2.\frac{9}{25}BC^2}\Rightarrow144BC^2=\frac{144}{625}BC^4\)
\(\Leftrightarrow\frac{144}{625}BC^2-144=0\Leftrightarrow BC^2=144.\frac{625}{144}=625\Leftrightarrow BC=25\)cm
\(\Rightarrow AB=\frac{3}{5}BC=\frac{3}{5}.25=\frac{75}{5}=15\)cm
\(\Rightarrow AC=\frac{4}{5}BC=\frac{4}{5}.25=\frac{100}{5}=20\)
Chu vi tam giác là : \(P_{ABC}=AB+BC+AB=15+20+25=60\)cm2
A B C H D 15 20
b, Vì AD là phân giác nên : \(\frac{AB}{AC}=\frac{BD}{DC}=\frac{15}{20}=\frac{3}{4}\Rightarrow AB=\frac{3}{4}AC\)
Lại có : \(BC=BD+DC=15+20=35\)cm
Áp dụng định lí Pytago cho tam giác ABC vuông tại A
\(BC^2=AC^2+AB^2=AC^2+\left(\frac{3}{4}AC\right)^2\)
\(\Rightarrow\frac{25}{16}AC^2=1225\Leftrightarrow AC^2=\frac{16.1225}{25}=784\Leftrightarrow AC=28\)cm
\(\Rightarrow AB=\frac{3}{4}.28=21\)cm
* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{AH^2}=\frac{AC^2+AB^2}{AB^2AC^2}\)
\(\Leftrightarrow\frac{1}{AH^2}=\frac{784+441}{345744}\Leftrightarrow1225AH^2=345744\Leftrightarrow AH^2=\frac{7056}{25}\Leftrightarrow AH=\frac{84}{5}\)cm
* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{441}{35}=\frac{63}{5}\)cm
\(\Rightarrow HD=BD-BH=15-\frac{63}{5}=\frac{12}{5}\)cm
Áp dụng định lí Pytago cho tam giác AHD vuông tại H
\(AD^2=AH^2+HD^2=\left(\frac{84}{5}\right)^2+\left(\frac{12}{5}\right)^2=288\Rightarrow AD=12\sqrt{2}\)cm
a)Ta có: 62+82=102
⇒ AB2+AC2=BC2
⇒ ΔABC vuông tại A (Py-ta-go đảo)
b)Ta có:\(AB^2=BD.BC\Leftrightarrow BD=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6cm\) (hệ thức lượng)
Ta có: \(AC^2=CD.BC\Leftrightarrow CD=\dfrac{AC^2}{BC}=\dfrac{8^2}{10}=6,4cm\) (HTL)
Ta có: \(AD.BC=AB.AC\Leftrightarrow AD=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4,8cm\) (HTL)
c)Vì P là hình chiếu của D trên AB
⇒DP⊥AB \(\Rightarrow\widehat{APD}=90^o\)
Xét ΔAPD và ΔADB có:
\(\widehat{A}:chung\)
\(\widehat{APD}=\widehat{ADB}=90^o\)
⇒ ΔAPD ∼ ΔADB (g-g)
\(\Rightarrow\dfrac{AP}{AD}=\dfrac{AD}{AB}\Rightarrow AP.AB=AD^2\) (1)
Chứng minh tương tự,ta có: ΔADQ ∼ ΔACD (g-g)
\(\Rightarrow\dfrac{AD}{AC}=\dfrac{AQ}{AD}\Rightarrow AC.AQ=AD^2\) (2)
Ta có: AD2 = BD.CD (HTL) (3)
Từ (1)(2)(3)⇒AP.AB=AC.AQ=BD.CD=AD2
d)Xét tg APDQ có: \(\widehat{DPA}=\widehat{PAQ}=\widehat{AQD}=90^o\)
⇒ APDQ là hình chữ nhật
⇒ AD=PQ và \(\widehat{PDQ}=90^o\)
Ta có: AP.BP=DP2 (HTL trong ΔADB)
AQ.CQ=DQ2 (HTL trong ΔADC)
⇒ AP.BP+AQ.CQ=DP2+DQ2=PQ2 (Py-ta-go trong ΔPDQ vuông tại D)
Mà PQ=AD ⇒ AP.BP+AQ.CQ=AD2
e) Ta có: PQ=AD (cmt)
Mà AD = 4,8 cm
⇒ PQ = 4,8 cm
ta có ab\(^2\)+ ac\(^2\) = 90 + 160
=250
lại có bc\(^2\) =250
\(\Rightarrow\)ab\(^2\) + ac\(^2\) = bc\(^2\) ( = 250 )
\(\Rightarrow\)tam giác abc vuông tại a
\(\sin b\) = \(\frac{ac}{bc}\) = \(\frac{40}{50}\) = \(\frac{4}{5}\)
\(\tan c\)= \(\frac{ab}{ac}\) = \(\frac{30}{40}\) = \(\frac{3}{4}\)
\(\widehat{b}\)\(\approx\) 53.1
\(\widehat{c}\) \(\approx\) 36.9
áp dụng htl vào tam giác abc vuông tại a có
ah * bc = ab * ac
\(\Rightarrow\)ah = \(\frac{ab\cdot ac}{bc}\) =24(dvdd)
áp dụng đ/lí pytago vào tam giác ahb vuông tại h có
bh\(^2\)= ab\(^2\)- ah\(^2\)=324
\(\Rightarrow\)bh = \(\sqrt{324}\)= 18 (dvdd)
áp dụng đ/lí pytago vào tam giác ahc vuông tại h có
ch\(^2\)= ac\(^2\)-ah\(^2\) = 1024
\(\Rightarrow\)ch=\(\sqrt{1024}\)=32(dvdd)
Sửa đề: ΔABC vuông tại A
tan B=AC/AB
=>tan 30=AC/AB=căn 3/3
Xét ΔABC vuông tại A có AD là đường cao
nên AB^2=BD*BC; AC^2=CD*CB
=>BD/CD=(AB/AC)^2=(3/căn 3)^2=3