Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 : Góc lớn nhất là góc A ( đáp án đúng là a )
Câu 2 : Cạnh lớn nhất là cạnh AC ( đáp án đúng là b )
Câu 3 : Trong tam giác, điểm cách đều 3 cạnh là giao điểm của ba đường phân giác ( đáp án đúng là đáp án c )
Câu 4 : Chu vi tam giác đó là 22cm ( đáp án đúng là đáp án c )
Câu 5 : Bộ ba đoạn thẳng không thể là ba cạnh của một tam giác là 3cm,2cm,6cm ( đáp án đúng là đáp án b )
Câu 6 : Khi đó ta có MP>NP>MN ( đáp án đúng là đáp án c )
Câu 7 : Trọng tâm của tam giác là giao điểm của ba đường trung tuyến ( đáp án đúng là đáp án a )
Bài 1 a )
Xét \(\Delta ABC\) có A + B + C = 180 ( định lí )
Từ A : B : C = 3 : 2 : 1 => \(\dfrac{A}{3}=\dfrac{B}{2}=\dfrac{C}{1}\)
Áp dụng tích chất tỉ số bằng nhau ta có :
\(\dfrac{A}{3}=\dfrac{B}{2}=\dfrac{C}{1}=\dfrac{A+B+C}{3+2+1}=\dfrac{180}{6}=30\)
=> \(\dfrac{A}{3}=30\Rightarrow A=30.3=90\)
\(\Rightarrow\dfrac{B}{2}=30\Rightarrow B=30.2=60\)
\(\Rightarrow\dfrac{C}{1}=30\Rightarrow C=30.1=30\)
Vậy A = 90 ; B = 60 ; C = 30
Còn kí hiệu góc với số đo độ bn tự viết nhá
Giả sử \(0< a\le c\)\(\Rightarrow a^2\le c^2\)
\(a^2+b^2>5c^2\)
\(\Rightarrow a^2+b^2>5a^2\)
\(\Rightarrow b^2>4a^2\)
\(\Rightarrow b>2a\) (1)
\(c^2\ge a^2\Rightarrow c^2+b^2\ge a^2+b^2>5c^2\)
\(\Rightarrow c^2+b^2>5c^2\)\(\Rightarrow b^2>4c^2\Rightarrow b>2c\) (2)
Cộng (1) và (2) ta được:
\(2b>2a+2c\Rightarrow b>a+c\) ( vô lý )
\(\Rightarrow c< a\)
Chứng minh tương tự : \(c< b\)
Do \(\hept{\begin{cases}c< a\\c< b\end{cases}\Leftrightarrow\hept{\begin{cases}AB< BC\\AB< AC\end{cases}}}\Rightarrow\hept{\begin{cases}\widehat{C}< \widehat{A}\\\widehat{C}< \widehat{B}\end{cases}}\)
\(\Rightarrow2\widehat{C}< \widehat{A}+\widehat{B}\)
\(\Rightarrow3\widehat{C}< \widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow\widehat{C}< 60^o\) (đpcm)
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow a=bk;c=dk\)
\(\dfrac{a+b}{a}=\dfrac{bk+b}{bk}=\dfrac{b\left(k+1\right)}{bk}=\dfrac{k+1}{k}\)
\(\dfrac{c+d}{c}=\dfrac{dk+d}{dk}=\dfrac{d\left(k+1\right)}{dk}=\dfrac{k+1}{k}\)
\(\Rightarrow\dfrac{a+b}{a}=\dfrac{c+d}{c}\rightarrowđpcm\)
\(\dfrac{a-b}{a}=\dfrac{bk-b}{bk}=\dfrac{b\left(k-1\right)}{bk}=\dfrac{k-1}{k}\)
\(\dfrac{c-d}{c}=\dfrac{dk-d}{dk}=\dfrac{d\left(k-1\right)}{dk}=\dfrac{k-1}{k}\)
\(\Rightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\rightarrowđpcm\)
\(\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{bk}{b\left(k+1\right)}=\dfrac{k}{k+1}\)
\(\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{dk}{d\left(k+1\right)}=\dfrac{k}{k+1}\)
\(\Rightarrow\dfrac{a}{a+b}=\dfrac{c}{c+d}\rightarrowđpcm\)
\(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\)
\(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\)
\(\Rightarrow\dfrac{a}{a-b}=\dfrac{c}{c-d}\rightarrowđpcm\)
Vì BC < AC < AB ⇒ ∠A < ∠B < ∠C hay ∠C > ∠B > ∠A . Chọn D