Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đkxđ: \(x\in R\).
\(cos2x-cos3x+cos4x=0\Leftrightarrow\left(cos2x+cos4x\right)-cos3x=0\)
\(\Leftrightarrow2cos3x.cosx-cos3x=0\)
\(\Leftrightarrow cos3x\left(2cos2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos3x=0\\2cos2x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}cos3x=0\\cos2x=\dfrac{1}{2}\end{matrix}\right.\)
\(cos3x=0\Leftrightarrow3x=\dfrac{\pi}{2}+k\pi\Leftrightarrow x=\dfrac{\pi}{6}+\dfrac{k\pi}{3}\)
\(cos2x=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{\pi}{3}+k2\pi\\2x=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k\pi\\x=-\dfrac{\pi}{6}+k\pi\end{matrix}\right.\)
\(\dfrac{sinB}{sinC}=2cosA\Leftrightarrow sinB=2cosA.sinC\)
\(\Leftrightarrow sinB=sin\left(A+C\right)+sin\left(C-A\right)\)
\(\Leftrightarrow sinB=sin\left(\pi-\left(A+C\right)\right)+sin\left(C-A\right)\)
\(\Leftrightarrow sinB=sinB+sin\left(C-A\right)\)
\(\Leftrightarrow sin\left(C-A\right)=0\) (1)
Do A, C là số đo các góc trong tam giác nên từ (1) suy ra:
\(C=A\) hay tam giác ABC cân.
(la) A E D B C G F c b
Đặt \(\overrightarrow{AB}=\overrightarrow{b,}\overrightarrow{AC}=\overrightarrow{c,}t=\frac{BF}{FC}\)
Khi đó, \(\overrightarrow{AE}=p,\overrightarrow{AD}=q\overrightarrow{c},p,q\in\left(0;1\right)\) và
\(\overrightarrow{AF}=\frac{t\overrightarrow{c}+\overrightarrow{b}}{1+t};\overrightarrow{AG}=\frac{t\overrightarrow{AD}+\overrightarrow{AE}}{1+t}=\frac{tq\overrightarrow{c}+p\overrightarrow{b}}{1+t}\)
Mặt khác, do BE = tCD suy a \(\left(1-p\right)\left|b\right|=t\left(1-q\right)\left|\overrightarrow{c}\right|\)
Từ đó, với chú ý đường phân giác \(l_a\) có vec tơ chỉ phương là \(\frac{\overrightarrow{c}}{\left|\overrightarrow{c}\right|}+\frac{\overrightarrow{b}}{\left|\overrightarrow{b}\right|}\)
Suy ra :
\(\overrightarrow{GF}=\overrightarrow{AF}-\overrightarrow{AG}=\frac{t\overrightarrow{c}+\overrightarrow{b}}{1+t}-\frac{tq\overrightarrow{c}+p\overrightarrow{b}}{1+t}\)
\(=\frac{t\left(1-q\right)}{1+t}.\overrightarrow{c}+\frac{1-p}{1+t}.\overrightarrow{b}\)
\(=\frac{\left(1-q\right)\left|b\right|}{1+t\overrightarrow{ }}\left(\frac{\overrightarrow{c}}{\left|\overrightarrow{c}\right|}+\frac{\overrightarrow{b}}{\left|\overrightarrow{b}\right|}\right)=\frac{\left(1-q\right)\left|\overrightarrow{b}\right|}{1+t}.\overrightarrow{AL}\)
=> Điều phải chứng minh
Từ giả thiết suy ra với mọi điểm O đều có :
\(\overrightarrow{OP}=\frac{1}{2}\left(\overrightarrow{OB}+\overrightarrow{OC}\right)\), \(\overrightarrow{ON}=\frac{1}{2}\left(\overrightarrow{OA}+\overrightarrow{OE}\right)\Rightarrow\overrightarrow{OI}=\frac{1}{4}\left(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OE}\right)\)
\(\overrightarrow{OM}=\frac{1}{2}\left(\overrightarrow{OA}+\overrightarrow{OB}\right)\), \(\overrightarrow{OQ}=\frac{1}{2}\left(\overrightarrow{OD}+\overrightarrow{OE}\right)\Rightarrow\overrightarrow{OJ}=\frac{1}{4}\left(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OD}+\overrightarrow{OE}\right)\)
Từ đó suy ra \(\overrightarrow{JI}=\frac{1}{4}\left(\overrightarrow{OC}-\overrightarrow{OD}\right)\Rightarrow\) IJ // CD => Điều phải chứng minh
a) Gọi q là công sai của cấp số nhân. Ta có: \(a;b=aq;c=aq^2\).
\(a^2b^2c^2\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right)=\dfrac{b^2c^2}{a}+\dfrac{a^2c^2}{b}+\dfrac{a^2b^2}{c}\)
\(=\dfrac{\left(a.q\right)^2\left(a.q^2\right)^2}{a}+\dfrac{a^2\left(aq^2\right)^2}{aq}+\dfrac{a^2\left(aq\right)^2}{aq^2}\)
\(=\dfrac{a^2q^2a^2q^4}{a}+\dfrac{a^2a^2q^4}{aq}+\dfrac{a^2a^2q^2}{aq^2}\)
\(=a^3q^6+a^3q^3+a^3\)
\(=\left(a^2q\right)^3+\left(aq\right)^3+a^3\)
\(=c^3+b^3+a^3=a^3+b^3+c^3\).
b) Gọi q là công bội của của cấp số nhân.
Ta có: \(a;b=aq;c=aq^2;d=aq^3\).
\(\left(ab+bc+cd\right)^2=\left(a.aq+aq.aq^2+aq^2.aq^3\right)^2\)
\(=\left(a^2q+a^2q^3+a^2q^5\right)^2=a^4q^2\left(1+q^2+q^4\right)^2\). (1)
\(\left(a^2+b^2+c^2\right)\left(b^2+c^2+d^2\right)\)\(=\left(a^2+a^2q^2+a^2q^4\right)\left(a^2q^2+a^2q^4+a^2q^6\right)\)
\(=a^2\left(1+q^2+q^4\right)a^2q^2\left(1+q^2+q^4\right)\)
\(=a^4q^2\left(1+q^2+q^4\right)^2\). (2)
So sánh (1) và (2) ta có điều phải chứng minh.