Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
SADE = 2\(\times\)SAGE ( vì hai tam giác có chung chiều cao hạ từ đỉnh A xuống đáy DE và DE = 2\(\times\) GE )
⇒ SADE = 36 \(\times\) 2 = 72 (cm2)
SADE = \(\dfrac{3}{4}\)\(\times\)SADC (vì hai tam giác có chung chiều cao hạ từ Đỉnh D xuống đáy AC và AE = \(\dfrac{3}{4}\)AC)
⇒ SACD = 72 : \(\dfrac{3}{4}\) = 96 (cm2)
DC = BC - BD = BC - \(\dfrac{1}{5}\)BC = \(\dfrac{4}{5}\)BC
SADC = \(\dfrac{4}{5}\)SABC (vì hai tam giác có chung chiều cao hạ từ đỉnh A xuống đáy BC và DC = \(\dfrac{4}{5}\)BC)
⇒ SABC = 96 : \(\dfrac{4}{5}\) = 120 (cm2)
Tỉ số phần trăm diện tích tam giác ADE và diện tích tam giác ABC là:
72 : 120 = 0,6
0,6 = 60%
Đáp số: 60%
Ta có diện tích tam giác AEC=diện tích tam giác AGD(vì G là trung điểm của DE và có chung chiều cao )
Diện tích tam giác ADE là:
12+12=24cm
Ta có diện tích tam giác ECD=1/3 diện tích tam giác AED(vì CE=1/4AC và co chung cạnh đáy)
Diện tích tam giác ECD là:
24/4=8cm
Diện tích tam giác ACD là:
8+24=32cm
Diện tích tam giác ABC là:
32/2*3=48cm
Đáp số :48cm
Kẻ đường cao AH
\(S_{ABD}=\dfrac{1}{2}\cdot AH\cdot BD;S_{ACD}=\dfrac{1}{2}\cdot AH\cdot CD\)
mà BD=CD
nên \(S_{ABD}=S_{ACD}=\dfrac{1}{2}\cdot180=90\left(cm^2\right)\)
Vì E là trung điểm của AC
nên \(S_{AED}=\dfrac{1}{2}\cdot90=45\left(cm^2\right)\)
Vì M là trung điểm của DE
nên \(S_{AME}=\dfrac{1}{2}\cdot45=22.5\left(cm^2\right)\)