K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2017

Theo đề bài thì ta có:

\(ah_a=bh_b=ch_c=2\)

Ta có:

\(\left(a^2+b^2+c^2\right)\left(h_a^2+h_b^2+h_c^2\right)\ge\left(ah_a+bh_b+ch_c\right)^2\)

\(=\left(2+2+2\right)^2=36\)

Dấu = xảy ra khi \(\hept{\begin{cases}a=b=c=\frac{2}{\sqrt[4]{3}}\\h_a=h_b=h_c=\sqrt[4]{3}\end{cases}}\) 

21 tháng 12 2017

B c B' A K H

Lấy B' đối xứng với B qua AK  ( K thỏa mãn \(BK\perp AB\)\(AK\perp BK\))

CM được : \(\hept{\begin{cases}BB'=2BK=2AH=2h_a\\AB=AB'\end{cases}}\)

Ta có : \(BB'^2=CB'^2-BC^2\le\left(AB'+AC\right)^2-BC^2=\left(AB+AC\right)^2-BC^2\)

\(\Rightarrow\left(2h_a\right)^2=4h_a^2\le\left(b+c\right)^2-a^2\)

Tương tự , ta có : \(4h_b^2\le\left(a+c\right)^2-b^2\)        và        \(4h_c^2\le\left(a+b\right)^2-c^2\)

Suy ra : \(4\left(h_a^2+h_b^2+h_c^2\right)\le\left(a+b\right)^2+\left(b+c\right)^2+\left(a+c\right)^2-a^2-b^2-c^2\)

\(\Rightarrow4\left(h_a^2+h_b^2+h_c^2\right)\le a^2+b^2+c^2+2ab+2bc+2ac=\left(a+b+c\right)^2\)

\(\Rightarrow\frac{\left(a+b+c\right)^2}{h_a^2+h_b^2+h_c^2}\ge4\)Hay \(P\ge4\)

" = " khi  \(B',A,C\) thẳng hàng \(\Rightarrow A\)là trung điểm của \(B'C\)\(\Rightarrow AH\)là trung tuyến \(\Delta ABC\Rightarrow\Delta ABC\)cân tại \(A\)

               Tương tự , \(\Delta ABC\)  lần lượt cân tại \(B,C\)

                Suy ra : \(\Delta ABC\)  đều 

Vậy \(MIN_P=4\)đạt được khi \(\Delta ABC\)đều

31 tháng 5 2017

Ta có :\(S_{ABC}=\dfrac{1}{2}.a.h_a=\dfrac{1}{2}.b.h_b=\dfrac{1}{2}.c.h_c\)

\(\Rightarrow a.h_a=b.h_b=c.h_c=2S_{ABC}=2\)

Áp dụng bất đẳng thức bunhiacopski ta có :

\(\left(a^2+b^2+c^2\right)\left(h_a^2+h_b^2+h_c^2\right)\ge\left(a.h_a+b.h_b+c.h_c\right)^2=36\)

Dấu "=" xảy ra khi tam giác ABC đều

\(\frac{S}{h_a}+\frac{S}{h_b}+\frac{S}{h_c}=\frac{1}{2}\left(a+b+c\right)=p=\frac{S}{r}\)

\(\Rightarrow\frac{1}{r}=\frac{1}{h_a}+\frac{1}{h_b}+\frac{1}{h_c}\)

Học tốt!!!!!!!!!!!!!!!!

29 tháng 6 2019

Gọi O là tâm đường tròn bàng tiếp trong góc A.Ta có:

\(S_{OAC}+S_{OAB}-S_{OBC}=S_{ABC}\Rightarrow b.r_a+c.r_a-a.r_a=2S\Rightarrow S=\frac{r_a\left(b+c-a\right)}{2}=r_a\left(p-a\right).\)(p là nửa chu vi tam giác ABC)

Cm tương tự: \(S=r_a\left(p-a\right)=r_b\left(p-b\right)=r_c\left(p-c\right)=p.r\)

\(\Rightarrow\frac{S}{r_a}+\frac{S}{r_b}+\frac{S}{r_c}=p-a+p-b+p-c=3p-2p=p=\frac{S}{r}\Rightarrow\frac{1}{r}=\frac{1}{r_a}+\frac{1}{r_b}+\frac{1}{r_c}\)(đpcm)

29 tháng 6 2019

Đặt BC=a, AC=b, AB=c

 \(P=\frac{a+b+c}{2}\)

S là diện tích của tam giác ABC

Ta có công thức tính bán kính của các đường tròn bàng tiếp:

Tại góc A: \(r_a=\frac{S}{P-a}\)

Tại góc B: \(r_b=\frac{S}{P-b}\)

Tại góc C: \(r_c=\frac{S}{P-c}\)

Công thức tính bán kính đường tròn nội tiếp tam giác ABC:

\(r=\frac{S}{P}\)

=> \(\frac{1}{r_a}+\frac{1}{r_b}+\frac{1}{r_c}=\frac{P-a}{S}+\frac{P-b}{S}+\frac{P-c}{S}=\frac{3P}{S}-\frac{a+b+c}{S}\)

\(=\frac{3P}{S}-\frac{2P}{S}=\frac{P}{S}=\frac{1}{r}\)

24 tháng 1 2016

nhưng bài toán hay và khó ( toan 9)

24 tháng 1 2016

ở trong quyển đấy có lời giải mà

20 tháng 8 2015

Kí hiệu \(S,p,r\)  lần lượt là diện tích, nửa chu vi và bán kính đường tròn nội tiếp của tam giác \(ABC.\) Theo công thức tính diện tích tam giác ta có \(S=pr=\frac{1}{2}ah_a=\frac{1}{2}bh_b=\frac{1}{2}ch_c.\)  Từ đó suy ra, bất đẳng thức cần chứng minh tương đương với

\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\le\frac{1}{4r^2}.\)  Đặt \(x=p-a,y=p-b,z=p-c\)   thì \(x,y,z\)  là các số dương và ta có

\(a=y+z,b=z+x,c=x+y,r=\sqrt{\frac{xyz}{x+y+z}}.\)  Thành thử bất đẳng thức tương đương với

\(\frac{1}{\left(x+y\right)^2}+\frac{1}{\left(y+z\right)^2}+\frac{1}{\left(z+x\right)^2}\le\frac{x+y+z}{4xyz}.\)  Để chứng minh điều này ta sử dụng bất đẳng thức đơn giản: \(\left(a+b\right)^2\ge4ab\)  với mọi \(a,b\). Khi đó

\(\frac{1}{\left(x+y\right)^2}+\frac{1}{\left(y+z\right)^2}+\frac{1}{\left(z+x\right)^2}\le\frac{1}{4xy}+\frac{1}{4yz}+\frac{1}{4zx}=\frac{x+y+z}{4xyz}.\)  (ĐPCM).