Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(AD=\frac{1}{3}\times CD\Rightarrow S_{ABF}=\frac{1}{3}\times S_{BFC}\)
\(BE=\frac{1}{3}\times AB\Rightarrow S_{BEF}=\frac{1}{3}\times S_{ABF}\)
\(\Rightarrow S_{BEF}=\frac{1}{3}\times\frac{1}{3}\times S_{BFC}=\frac{1}{9}\times S_{BFC}\Rightarrow S_{BEF}=\frac{1}{10}\times S_{BEC}\)
\(BE=\frac{1}{3}\times AB\Rightarrow S_{BEC}=\frac{1}{3}\times S_{ABC}\)
\(\Rightarrow S_{BEF}=\frac{1}{10}\times\frac{1}{3}\times S_{ABC}=\frac{1}{30}\times S_{ABC}\)
\(\Rightarrow S_{BAC}=30\times S_{BEF}=5400\left(cm^2\right)\)
( giả sử có E nằm trên BC sao cho BD=DE=EC)
S AOB=2 S AOC( vì có chung đấy AO, chiều cao hạ từ B xuống AO gấp 2 lần chiều cao hạ từ C xuống AO)( đoạn so sánh chiều cao, đầu tiên bạn phải chứng minh S ABD=2 S AEC, sau đó, nhận xét, 2 tam giác này có chung cạnh đáy AE, tức là chiều cao hạ từ C xuống AE =1/2 chiều cao hạ từ B xuống AE)
=> S AOB= 18.2=36(cm2)
a) ta thấy tỉ số diện tích tam giác ANB/ABC=1/3
tỉ số diện tích tam giác AMN/ANB=1/3 ( có chung chiều cao hạ từ N)
diện tích tam giác AMN là:
81×13×13=9��281×31×31=9cm2
b) C với D như hình vẽ
ta thấy diện tích hai tam giác NDE bằng diện tích tam giác NDC ( có chung chiều cao và đáy )
từ đó suy ra:
��������=��������=12SNDESAND=SNDCSAND=21
vậy AND/NDE=1/2