...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2016

............................

.........................???????/

5 tháng 2 2016

\(\cfrac{P}{P-a}=\cfrac{2P}{2P-2a}=\cfrac{2P}{a+b+b-2a}=\cfrac{2P}{-a+b+c}\)

Chứng minh tương tự => \(\cfrac{P}{P-b}=\cfrac{2P}{a-b+c} \)\(\cfrac{P}{P-c}=\cfrac{2P}{a+b-c}\)

=>VT=\(\cfrac{2P}{-a+b+c}+\cfrac{2P}{a-b+c}+\cfrac{2P}{a+b-c} \geq 2P\cfrac{(1+1+1)^2}{a+b +c}=9\)(Áp dụng bđt \(\cfrac{a^2}{x}+\cfrac{b^2}{y}+\cfrac{c^c}{z}\geq\cfrac{(a+b+c)^2}{x+y+z}\))

31 tháng 7 2017

Áp dụng BĐT $$\frac{1}{x}+\frac{1}{y}\ge \frac{4}{x+y}$$

\(Q=1964\left(\frac{1}{p-a}+\frac{1}{p-b}\right)+15\left(\frac{1}{p-b}+\frac{1}{p-c}\right)+10\left(\frac{1}{p-a}+\frac{1}{p-c}\right)\)

\(\ge1964\cdot\frac{4}{2p-\left(a+b\right)}+15\cdot\frac{4}{2p-\left(b+c\right)}+10\cdot\frac{4}{2p-\left(c+a\right)}\)

\(=4\left(\frac{15}{a}+\frac{10}{b}+\frac{1964}{c}\right)=4\cdot2006=8024\)

Xảy ra khi \(a=b=c=\frac{117}{118}\)

30 tháng 8 2017

Do a,b,c là 3 cạnh tam giác nên \(a+b-c>0;b+c-a>0;c+a-b>0\)

Đặt \(x=b+c-a>0\)

      \(y=a+c-b>0\)

     \(z=a+b-c>0\)

\(\Rightarrow a=\frac{"y+z"}{2}\)

\(\Rightarrow b=\frac{"x+z"}{2}\)

\(\Rightarrow c=\frac{"x+y"}{2}\)

\(A=\frac{a}{"b+c-a"}+\frac{b}{"a+c-b"}+\frac{c}{"a+b-c"}\)

\(=\frac{"y+z"}{"2x"}+\frac{"x+z"}{"2y"}+\frac{"x+y"}{"2z"}\)

\(=\frac{1}{2}."\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{y}{z}+\frac{z}{y}"\)

Áp dụng công thức bdt Cauchy cho 2 số :

\(\frac{x}{y}+\frac{y}{x}\ge2\)

\(\frac{x}{z}+\frac{z}{x}\ge2\)

\(\frac{y}{z}+\frac{z}{y}\ge2\)

Cộng 3 bdt trên, suy ra :

\("\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{y}{z}+\frac{z}{y}"\ge6\)

\(\Rightarrow A\ge\frac{1}{2}.6=3\) "dpcm"

P/s: Nhớ thay thế dấu ngoặc kép thành dấu ngoặc đơn nhé

1 tháng 8 2017

a^2+b^2+c^2=(a+b+c)^2-2ab-2bc-2ca=1-2ab-2bc-2ca

((a^2+b^2+c^2)-1)/2abc=(1-2ab-2bc-2ca-1)/abc=-(1/a+1/b+1/c)

T=4/a+b +4/b+c +4/c+a<=1/a+1/b+1/b+1/c+1/c+1/a-1/a-1/b-1/c=1/a+1/b+1/c<=9

Dấu = khi a=b=c=1/3

e cảm ơn anh nhìu nke hihi .Anh giỏi wa

24 tháng 5 2018

Áp dụng BĐT Cauchy-Schwarz và Nesbitt ta có:

\(P\le\sqrt{\left(1+1+1\right)\left(3-\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\right)}\)

\(\le\sqrt{\left(1+1+1\right)\left(3-\frac{3}{2}\right)}=\frac{3\sqrt{2}}{2}\)

25 tháng 5 2018

rõ đi bạn mình không hiểu lắm