Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,c: SỬa đề. gó A<góc C
Vì góc A<góc C
mà góc A+góc C=120 độ
nên góc A<góc B<góc C
=>AB>BC
b: Xét ΔBAD có BA=BD và góc ABD=60 độ
nên ΔBAD đều
a: AC=4cm
b: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó; ΔBAD=ΔBHD
c: Ta có: ΔBAD=ΔBHD
nên DA=DH
mà DH<DC
nên DA<DC
a: AC=4cm
b: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó; ΔBAD=ΔBHD
c: Ta có: ΔBAD=ΔBHD
nên DA=DH
mà DH<DC
nên DA<DC
Tham khảo:
Góc đối diện với cạnh bé hơn là góc bé hơn
Mà AB là cạnh nhỏ nhất
=> góc C là góc nhỏ nhất
Vì: góc A + góc B + góc C = 180 độ
=> góc C ≤ 180 độ : 3
góc C ≤ 60 độ
Góc đối diện với cạnh bé hơn là góc bé hơn
Mà AB là cạnh nhỏ nhất
=> góc C là góc nhỏ nhất
Vì: góc A + góc B + góc C = 180 độ
=> góc C ≤ 180 độ : 3
góc C ≤ 60 độ
a) Tam giác ABD vuông và tam giác EBD vuông đều có cạnh BD
Suy ra góc ABD = góc EBD
Vậy tam giác ABD = tam giác EBD
b) Ta có: AB=EB ( tam giác ABD = tam giác EBD )
Suy ra tam giác ABE cân tại B
Tam giác ABE cân tại B có góc EBA =60 độ
Suy ra tam giác ABE là tam giác đều
c) Tam giác ABC có góc CAB = 90 độ, góc CBA = 60 độ
Suy ra ACB = 30 độ
Suy ra tam giác ABC là nửa tam giác đều
Suy ra AB = 1/2 BC
Suy ra BC = 2AB = 2 . 5 = 10 cm
chúc bạn học tốt!
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
Chu vi của tam giác ABC là:
\(C_{ABC}=AB+AC+BC=6+8+10=24\left(cm\right)\)
b) Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔABD=ΔHBD(cạnh huyền-góc nhọn)
1/Giả sử trong 1 tam giác có 2 hóc tù thì tổng 3 góc của tam giác đó sẽ lớn hơn 180 độ
=>trong 1 tam giác chỉ có duy nhất 1 góc tù
2/Trong 1 tam giác nếu góc nhỏ nhất bằng 60 độ thì tổng 3 góc của tam giác đó sẽ lớn hơn 180 độ
=> trong một tam giác góc nhỏ nhất không thể lớn hơn 60 độ
3/Xét tam giác AMB = tam giác AMC (c.c.c)
=> góc BMA = góc CMA
Mặt khác góc BMA + góc CMA = 180 độ
=> góc BMA = góc CMA = 90 độ
=> AM vuông góc BC
=> AM là đường cao của tam giác hạ từ đỉnh A
Tam giác BMA = tam giác CMA
=> góc BAM = góc CAM
=> AM là tia phân giác của góc A