Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B I H M N C a)
SABC = ( AH x BC ) : 2
= ( 14,5 x 9,2 ) : 2
= 66,7 ( cm2 )
b)
Ta có : SABN = \(\frac{1}{2}\) SABC ( Vì có đáy AN = \(\frac{1}{2}\) đáy AC
và có chung chiều cao hạ từ B xuống AC . )
SAMC = \(\frac{1}{2}\) SABC ( Vì có đáy MC = \(\frac{1}{2}\) đáy BC
và có chung chiều cao hạ từ A xuống BC . )
Ta thấy : Hai tam giác ABN và AMC cùng chứa tam giác AIN , nên :
SABN + SAMC = 2 x SAIN + SABI + SMINC +
= \(\frac{1}{2}\) SABC + \(\frac{1}{2}\) SABC
= SABC . ( 1 )
Ta đã có :
SABC = SAIN + SABI + SMINC + SBIM ( 2 )
Từ ( 1 ) và ( 2 )
=> SAIN = SBIM .
a: \(S_{ABC}=\dfrac{14.5\cdot9.2}{2}=66.7\left(cm^2\right)\)
A B C M N H I
SABC = (AH x BC) : 2 = (14,5 x 9,2) : 2 = 66,7 (cm2)
Ta có : SABN = \(\frac{1}{2}\) SABC (đáy AN = 1/2 AC ; chung chiều cao hạ từ B xuống AC)
và SAMC = \(\frac{1}{2}\) SABC (đáy MC = 1/2 BC ; chung chiều cao hạ từ A xuống BC)
Hai tam giác ABN và AMC cùng chứa tam giác AIN nên SABN + SAMC = 2.SANI + SABI + SMINC = \(\frac{1}{2}\) SABC + \(\frac{1}{2}\) SABC = SABC (1)
Ta đã có : SABC = SANI + SABI + SMINC + SBIM (2)
Từ (1) và (2) => SAIN = SBIM
Đến đây dẽ rồi nhá !!!
A B C M N P
Chọn tam giác BMC làm trung gian.
Ta có : \(BN=\frac{2}{3}BC\Rightarrow S_{BMN}=\frac{2}{3}S_{BMC}\)
Mà \(BM=\frac{1}{3}AB\Rightarrow S_{BMC}=\frac{1}{3}S_{ABC}\)
Do đó : \(S_{BMN}=\frac{2}{3}.\frac{1}{3}S_{ABC}=\frac{2}{9}S_{ABC}\)
Tương tự ta chứng minh được \(S_{BMN}=S_{PNC}=S_{AMP}=\frac{2}{9}S_{ABC}\)
Suy ra : \(S_{MNP}=S_{ABC}-3S_{BMN}=S_{ABC}-3.\frac{2}{9}S_{ABC}=\frac{1}{3}S_{ABC}=\frac{1}{3}.360=120cm^2\)
AI TRẢ LỜI ĐƯỢC MÌNH TICK CHO
GẤP LẮM ĐÓ !!!!!!!!!!!!!!!!!!!!!!!!!
cố gắng giúp mình nha
giúp với please