Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AM^2+BN^2
=CM^2+AC^2+BC^2+CN^2
=AB^2+1/4(AC^2+CB^2)
=5/4BA^2 ko đổi
b: Tập hợp trọng tâm G là (C;2/3CK)(với K là trung điểm của AB)
Điểm G cách trung điểm M của BC (cố định) một khoảng cố định bằng \dfrac{m}{3}3m.
Kết luận: quỹ tích trọng tâm G của tam giác ABC là đường tròn (G , \dfrac{m}{3})(G,3m) trừ các giao điểm của đường tròn với BC (do G không thể thuộc BC).
Cần tìm điểm cố định sao cho C cách điểm đó một khoảng cố định.
Dựng điểm D đối xứng với B qua A, khi đó D là điểm cố định, AM là đường trung bình của tam giác BCD, CD = 2AM = 2m (cố định)
Kết luận: Quỹ tích điểm C là đường tròn (D ; 2m), trừ các giao điểm của nó với đường thẳng AB (khi đó tam giác ABC trở thành đoạn thẳng)