Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
b)
chứng minh EDCB là tgnt => góc AED = góc ACB
từ đó, chứng minh tam giác AED đồng dạng ACB (gg)
=> DE / BC = AD / AB
tam giác ADB vuông tại A => AD / AB = cotg A = cotg 45 = 1
c)
kẻ tiếp tuyến tại Ax của (O) (Ax thuộc nửa mp bờ AC chứa B)
góc xAB = ACB = AED
=> DE // Ax
Mà Ax vuông góc với OA nên OA vuông góc với DE. (đpcm)
c) Kẻ tiếp tuyến Ax của (O) ta có ^xAB = ^ACB (=1/2 cung AB)
Lại có tứ giác BEDC nội tiếp (vì ^D = ^E = 90 độ)
Mà ^AED = ^ ACB (Cùng bù với ^BED)
=> ^xAB = ^AED, mà ^xAB và ^AED ở vị trí SLT nên Ax// DE nhưng Ax vuông góc với OA (T/c Tiếp tuyến)
=> DE vuông góc với AO
a: góc ADH+góc AEH=180 độ
=>ADHE nội tiếp
c: Kẻ tiếp tuyến Ax của (O)
=>góc xAC=góc ABC=góc ADE
=>DE//Ax
=>OA vuông góc DE
a: Xét tứ giác ADHE có góc ADH+góc AEH=180 đọ
nên ADHE là tứ giác nội tiếp
c: Kẻ AM là tiếp tuyến tại A của (O)
Xét ΔADB vuông tạiD và ΔAEC vuông tại E có
góc DAB chung
Do đo: ΔADB đồng dạng với ΔAEC
Suy ra: AD/AE=AB/AC
hay AD/AB=AE/AC
Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
Do đó: ΔADE đồng dạng vớiΔABC
=>góc ADE=góc ABC
mà góc ABC=góc OAM
nên góc OAM=góc ADE
=>AM//DE
=>OA\(\perp\)DE