Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Do hệ số \(a>0\Rightarrow y_{max}\) tại 1 trong 2 đầu mút của đoạn xét
Mà \(-\frac{b}{2a}=1\); ta có \(1-\left(-1\right)>2-1\) nên \(y\) đạt max tại \(x=-1\)
\(y\left(-1\right)=1+2+m^2+m-5=0\)
\(\Leftrightarrow m^2+m-2=0\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)
Câu 2:
Gọi G là trọng tâm tam giác ABC
\(P=MA^2+MB^2+MC^2=\overrightarrow{MA}^2+\overrightarrow{MB}^2+\overrightarrow{MC}^2\)
\(=\left(\overrightarrow{MG}+\overrightarrow{GA}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GB}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GC}\right)^2\)
\(=3MG^2+GA^2+GB^2+GC^2+2\overrightarrow{MG}\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\)
\(=3MG^2+GA^2+GB^2+GC^2\)
Do \(G\) cố định \(\Rightarrow P_{min}\Leftrightarrow MG_{min}\Rightarrow M\) là chân đường cao hạ từ \(G\) xuống BC \(\Rightarrow M\) là trung điểm BC
Gọi \(M\left(x;x\right)\Rightarrow\overrightarrow{AM}=\left(x+2;x-7\right)\) ; \(\overrightarrow{BM}=\left(x-1;x-2\right)\); \(\overrightarrow{CM}=\left(x-7;x-9\right)\)
\(\Rightarrow T=\left(x+2\right)^2+\left(x-7\right)^2+\left(x-1\right)^2+\left(x-2\right)^2+\left(x-7\right)^2+\left(x-9\right)^2\)
\(T=6x^2-48x+188\)
\(T=6\left(x-4\right)^2+92\ge92\)
\(T_{min}=92\) khi \(x=4\Rightarrow M\left(4;4\right)\)
a) ta có : \(\overrightarrow{BA}+\overrightarrow{BC}=2\overrightarrow{BN}\) \(\Rightarrow\left|\overrightarrow{BA}+\overrightarrow{BC}\right|=2\left|\overrightarrow{BN}\right|=2BN\)
\(=2\left(AB^2-NA^2\right)=2\left(a^2-\left(\dfrac{1}{2}a\right)^2\right)=\dfrac{3}{2}a^2\)
b) \(\overrightarrow{NB}\)
c) ta có : \(\overrightarrow{NA}+\overrightarrow{MB}+\overrightarrow{PC}=\overrightarrow{NA}+\overrightarrow{AM}+\overrightarrow{PC}=\overrightarrow{NM}+\overrightarrow{PC}\)
\(=\overrightarrow{NM}+\overrightarrow{MN}=\overrightarrow{0}\left(đpcm\right)\)
d) ta có : \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MN}+\overrightarrow{MP}+\overrightarrow{MC}=\overrightarrow{MA}+\overrightarrow{AM}+\overrightarrow{MN}+\overrightarrow{NC}+\overrightarrow{MC}\)
\(\overrightarrow{MC}+\overrightarrow{MC}=2\overrightarrow{MC}\)
\(\Rightarrow\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MN}+\overrightarrow{MP}+\overrightarrow{MC}\right|=2\left|\overrightarrow{MC}\right|=2MC\)
\(=2\left(AC^2-AM^2\right)=2\left(a^2-\left(\dfrac{1}{2}a\right)^2\right)=\dfrac{3}{2}a^2\)
a) bc=a2 suy ra 2RsinB.2RsinC=(2RsinA)2=4RsinA2
suy ra sinB.sinC=sinA2
còn cái còn lại bạn dựa vào công thức tính diên tích nhé
chứng minh ha2=hb.hc
ta có S=\(\dfrac{1}{2}a.h_a=\dfrac{1}{2}bh_b=\dfrac{1}{2}ch_c\)
suy ra : 2S=a.ha=bhb=chc
suy ra : a2ha2=b.c.hb.hc mà a2=b.c
suy ra : ha2=hb.hc