K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2020

Lỗi không vẽ hình được nha bạn !!! 

Bài 10 : 

a) Qua B vẽ đường thẳng song song với AD cắt AC tại M . 

Ta có : \(\widehat{B_1}=\widehat{A}_1,\widehat{M}=\widehat{A}_2,\)mà \(\widehat{A}_1=\widehat{A}_2\)

( vì AD là tia phân giác \(\widehat{BAC}\)

Suy ra \(\widehat{B}_1=\widehat{M},\)nên \(\Delta ABM\)cân đỉnh A . 

Từ đó có AM = AB = c 

\(\Delta ABM\)có MB < AM + AB = 2c 

\(\Delta ADC\)có MB // AD ,nên \(\frac{AD}{MB}=\frac{AC}{MC}\)

( Hệ quả của định lí Ta - lét ) , do đó 

\(AD=\frac{AC}{MC}.MB< \frac{AC}{AC+AM}.2c=\frac{2bc}{b+c}\)

b) Từ a) có \(\frac{1}{x}>\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)\)

Tương tự có \(\frac{1}{y}>\frac{1}{2}\left(\frac{1}{a}+\frac{1}{c}\right),\frac{1}{z}>\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

Do đó \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Bài 8 : 

\(\widehat{D}_1=\widehat{D}_2\Rightarrow\frac{MA}{MB}=\frac{DA}{DB}\Leftrightarrow MA.DB=MB.DA\left(1\right)\)

Mặt khác AM . BD . CN = AN . CD . BM   ( 2 ) 

Chia từng vế của các đẳng thức ( 1 ) và ( 2 ) ta được : 

\(\frac{MA.DB}{AM.BD.CN}=\frac{MB.DA}{AN.CD.BM}\)

Rút gọn được \(\frac{1}{CN}=\frac{DA}{AN.CD}\)   hay \(\frac{AN}{CN}=\frac{DA}{CD}\)

=> DN là tia phân giác của góc ADC

Bài 9 : 

Ta tính được : BC = 10 cm => MC = 5cm ,áp dụng tính chất phân giác trong tam giác có : 

\(\frac{AB'}{B'C}=\frac{AB}{AC}=\frac{6}{10}=\frac{3}{5}\)

\(\Rightarrow\frac{AB'}{3}=\frac{B'C}{5}=\frac{AC}{8}=1\Rightarrow AB'=3cm\)

B'C = 5cm 

=> \(\Delta IMC=\Delta IB'C\left(c.g.c\right)\Rightarrow\widehat{IMC}=\widehat{IB'C}\)

\(\Rightarrow\widehat{AB'B}=\widehat{IMB}\)mà \(\widehat{B}_1=\widehat{B}_2\Rightarrow\widehat{BIM}=\widehat{BAC}=90^o\)

Vậy số đo góc BIM là 90o

7 tháng 4 2020

Củng giống bạn ✰๖ۣۜŠɦαɗøω✰ thôi,nhưng để tránh spam mình sẽ gộp lại giúp bạn nhé !

Ảnh thứ 2 bạn vào TKHĐ của mình nhìn cho rõ nhé !

12 tháng 2 2018

A E B D C x b c c A

Từ B kẻ đường thẳng song song với đường phân giác AD, cắt CA ở E. Tam giác ABE cân ở A nên AE = AB = c

\(\Rightarrow\)CE = CA + AE = b + c 

Do đó AD // BE nên ta có :

\(\frac{AD}{BE}=\frac{CA}{CE}\)hay \(\frac{x}{BE}=\frac{b}{b+c}\), do đó \(x=\frac{b}{b+c}.BE\)

Mà BE < AB + AC < 2c

\(\Rightarrow\) \(x< \frac{2bc}{b+c}\)hay \(\frac{1}{x}>\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)\)( 1 )

Tương tự ta có : \(\frac{1}{y}>\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)( 2 )

ta cũng có : \(\frac{1}{z}>\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)( 3 )

Cộng từng vế của ( 1 ) ; ( 2 ) ; ( 3 ) ta có :

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Vậy \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\left(ĐPCM\right)\)

Hình mình vẽ hơi xấu tí thông cảm

25 tháng 3 2020

Sai chỗ nào tự sửa nha :)))

25 tháng 3 2020

Bài này hình như trong sách nào mà t quên ròi, ai nhớ nhắc với

9 tháng 3 2021

Xét tam giác ABC có ba cạnh BC = a, CA = b, AB = c. Phân giác của các góc A, B, C lần lượt là AD = x, BE = y, CF = z.

Kẻ DM // AB \((M\in AC)\).

Ta có \(\widehat{ADM}=\widehat{BAD}=\widehat{MAD}\Rightarrow\) Tam giác AMD cân tại M.

Do đó AM = MD.

Áp dụng định lý Thales với DM // AB ta có:

\(\dfrac{MD}{AB}=\dfrac{CM}{AC}=1-\dfrac{AM}{AC}=1-\dfrac{DM}{AC}\Rightarrow\dfrac{MD}{AB}+\dfrac{MD}{AC}=1\Rightarrow\dfrac{1}{MD}=\dfrac{1}{AB}+\dfrac{1}{AC}=\dfrac{1}{b}+\dfrac{1}{c}\).

Mặt khác theo bất đẳng thức tam giác ta có \(x=AD< AM+MD=2MD\Rightarrow MD>\dfrac{x}{2}\Rightarrow\dfrac{1}{MD}< \dfrac{2}{x}\Rightarrow\dfrac{1}{b}+\dfrac{1}{c}< \dfrac{2}{x}\).

Tương tự \(\dfrac{1}{c}+\dfrac{1}{a}< \dfrac{2}{y};\dfrac{1}{a}+\dfrac{1}{b}< \dfrac{2}{z}\).

Cộng vế với vế của các bđt trên rồi rút gọn ta có đpcm.

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^32, a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 03, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:a, (x + y+ z)^2 = 3(xy + yz + zx)b, (x + y)(y + z)(z + x) = 8xyzc, (x -...
Đọc tiếp

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2, 
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp

5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)

4
16 tháng 8 2017

SORY I'M I GRADE 6

3 tháng 5 2018

????????

8 tháng 4 2020

a) Gọi AD là tia phân giác của \(\widehat{BAC}\left(D\in BC\right)\)

Qua B vẽ đường thẳng song song với AD cắt AC tại M

Ta có: \(\widehat{ABM}=\widehat{BAD};\widehat{AMB}=\widehat{DAC}\)

Mà \(\widehat{BAD}=\widehat{DAC}\)(vì AD là phân giác \(\widehat{BAC}\))

=> \(\widehat{AMB}=\widehat{ABM}\) nên \(\Delta\)ABM cân tại A)

Từ đó có AM=AB=c. \(\Delta\)ABM có: MB<AM+AB=2c

\(\Delta\)ADC có: MB//AD, nên \(\frac{AD}{AB}=\frac{AC}{MC}\) (hệ quả định lý Ta-let)

do đó \(AD=\frac{AC}{MC}\cdot MB< \frac{AC}{AC+AM}\cdot2bc=\frac{2bc}{b+c}\)

b) Cmtt câu a) ta có: \(\hept{\begin{cases}y< \frac{2ca}{c+a}\\z< \frac{2ab}{a+b}\end{cases}}\)

Do đó: \(\hept{\begin{cases}\frac{1}{x}>\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)\\\frac{1}{y}>\frac{1}{2}\left(\frac{1}{a}+\frac{1}{c}\right)\\\frac{1}{z}>\frac{1}{2}\left(\frac{1}{b}+\frac{1}{a}\right)\end{cases}\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\)