Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)
\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)
Ta có : \(\frac{ab\sqrt{c-2}+bc\sqrt{a-3}+ac\sqrt{b-4}}{abc}=\frac{\sqrt{c-2}}{c}+\frac{\sqrt{a-3}}{a}+\frac{\sqrt{b-4}}{b}\)
Áp dụng bất đẳng thức Cauchy, ta có :
\(\frac{\sqrt{c-2}}{c}=\frac{\sqrt{2\left(c-2\right)}}{\sqrt{2}c}\le\frac{2+c-2}{2\sqrt{2}c}=\frac{1}{2\sqrt{2}}\)
\(\frac{\sqrt{a-3}}{a}=\frac{\sqrt{3\left(a-3\right)}}{\sqrt{3}a}\le\frac{3+a-3}{2\sqrt{3}a}=\frac{1}{2\sqrt{3}}\)
\(\frac{\sqrt{b-4}}{b}=\frac{\sqrt{4\left(b-4\right)}}{2b}\le\frac{4+b-4}{4b}=\frac{1}{4}\)
\(\Rightarrow\frac{\sqrt{c-2}}{c}+\frac{\sqrt{a-3}}{a}+\frac{\sqrt{b-4}}{b}\le\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+\frac{1}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}c-2=2\\b-4=4\\a-3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}c=4\\b=8\\a=6\end{cases}}\)
Vậy giá trị lớn nhất của biểu thức là \(\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+\frac{1}{4}\Leftrightarrow\hept{\begin{cases}a=6\\b=8\\c=4\end{cases}}\)
phá ra nha
sau đó bạn lm theo tek này
\(\frac{\sqrt{c-2}}{c}=\frac{\sqrt{2\left(c-2\right)}}{\sqrt{2}c}\le\frac{\frac{c}{2}}{\sqrt{2}c}=\frac{1}{\sqrt{2}}\)
mấy cái kia tt nha
Heron \(4\sqrt{3}S=\sqrt{3\left(a^2+b^2+c^2\right)^2-6\left(a^4+b^4+c^4\right)}\)
Cần CM: \(a^2+b^2+c^2\ge\sqrt{3\left(a^2+b^2+c^2\right)^2-6\left(a^4+b^4+c^4\right)}\)
\(\Leftrightarrow\)\(3\left(a^4+b^4+c^4\right)\ge\left(a^2+b^2+c^2\right)^2\) đúng (Cauchy-Schwarz)
Dấu "=" xảy ra khi ABC đều