Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(BH+HC=BC\)
\(\Leftrightarrow AH\cdot\cot B+AH\cdot\cot C=BC\)
\(\Leftrightarrow AH\cdot\left(\frac{\sqrt{3}}{3}+1,3\right)=BC\)
\(\Leftrightarrow AH\cdot1,9=10\)
\(\Rightarrow AH=5,3\left(cm\right)\)
\(\Rightarrow AC=\frac{AH}{\sin C}=\frac{5,3}{0,6}=8,2\left(cm\right)\)
b) Ta có: \(S_{ABC}=\frac{AH\cdot BC}{2}=\frac{5,3\cdot10}{2}=26,5\left(cm^2\right)\)
P/s: Các kết quả chỉ tương đối
góc B=60 độ
=>góc C=30 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>2a/BC=1/2
=>BC=4a
=>AC=2a*căn 3
AH=AB*AC/BC=2a*2a*căn 3/4a=a*căn 3
Xét ΔABC vuông tại A có sin C=AB/BC
=>6/BC=1/2
=>BC=12cm
AC=căn 12^2-6^2=6*căn 3(cm)
AH=6*6căn 3/12=3*căn 3(cm)
BH=AB^2/BC=3cm
CH=12-3=9cm
Lời giải:
Xét tam giác vuông $ABH$:
$\frac{AH}{AB}=\sin B\Rightarrow AH=AB.\sin B=12.\sin 40^0=12\sin 40^0=7,71$ (cm)
Xét tam giác vuông $AHC$:
$\frac{AH}{AC}=\sin C\Rightarrow AC=\frac{AH}{\sin C}=\frac{7,71}{\sin 30^0}=15,42$ (cm)
AB = BH . BC = 9.BH
mà BH = \(\dfrac{1}{2}AB\) => AB = 4,5 . AB
=> AB= 4,5
=> BH = 2,25 => HC = 6,75
Tam giác ABH vuông tại H =>AH=\(\dfrac{9\sqrt{3}}{4}\)
Tam giác AHC vuông tại H => AC=\(\dfrac{9\sqrt{3}}{2}\)
sai