Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\Delta ABC\) có MA = MB; NA = NC
\(\Rightarrow\)MN là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)MN // BC
\(\Rightarrow\)Tứ giác BMNC là hình thang
b) \(\Delta ABC\)có NA = NC; QB = QC
\(\Rightarrow\)NQ // AB; NQ = 1/2 AB
mà MA = 1/2 AB
\(\Rightarrow\)NQ = MA
Tứ giác AMQN có NQ // AM; NQ = AM
\(\Rightarrow\)AMQN là hình bình hành
Bài khá dài đó.
Sorry nhé mik mới lớp 6 ak nên ko bít, tha lỗi nha!
ý kiến gì thì nhắn tin cho mik mai 7g
pp, ngủ ngon!
a) Xét \(\Delta\)ABC ta có :
M là trung điểm AB
N là trung điểm AC
=> MN là đường trung bình
=> MN//BC , MN = 1/2 BC (1)
=> MNCB là hình thang
b) Xét tam giác ABC ta có :
N , P là trung điểm AC , BC (2)
=> NP là đường trung bình
Từ (1) và (2) => MNPB là hình bình hành
a) Xét \(\Delta\)ABC có: M; N là trung điểm của AB; AC
=> MN là đường trung bình của \(\Delta\)ABC (1)
=> MN//BC
=> BCNM là hình thang
b) (1) => MN //= \(\frac{1}{2}\) BC mà BP = \(\frac{1}{2}\)BP va B; P; C thẳng hàng ( vì P là trung điểm BC )
=> MN// = BP => MNPB là hình bình hành
c) MN // BC => MN // HP => MNHP là hình thang
(b) => ^MNP = ^MBP => ^MNP = ^MBH (2)
Lại có: ^NMH = ^MHB ( so le trong ) ( 3)
Mặt khác: \(\Delta\)AHB vuông tại H có HM là trug tuyến đáy AB
=> HM = \(\frac{1}{2}\)AB = BM
=> \(\Delta\)MHB cân tại M => ^MBH = ^MHB (4)
Từ (2) ; (3) ; (4) => ^NMH = ^MNP
=> MNPH là hình thang cân
b) Điều kiện để HPNM là hình chữ nhật:
Ta có: HPNM là hình thang cân
=> HPNM là hình chữ nhật MH vuông góc BC
Mặt khác ta có: AH vuông góc BC
=> A; M; H thẳng hàng mà A; M; B thẳng hàng
=> H trùng B
=> Tam giác ABC vuong tại B.
MỌI NGƯỜI GIÚP MÌNH TRONG HÔM NAY VỚI Ạ !!! MAI MÌNH KIỂM TRA RÙI !!! THANK KIU EVERYONE, MONG NHẬN ĐK CÂU TRẢ LỜI SỚM ( MÀ MỌI NGƯỜI KHÔNG CẦN VX HÌNH ĐÂU Ạ ^^)
1) a. xét trong tam giác ABC có
I trung điểm AB và K trung điểm AC =>IK là đường trung bình của tam giác ABC=>IK song song với BC
vậy BCKI là hình thang (vì có hai cạng đáy song song)
b.
IK // và =1/2BC (cm ở câu a) =>IK song song NM
M trung điểm HC và N trung điểm HB mà HB+HC=CB =>MN=IK=1/2BC
suy ra MKIN là hbh => có hai đường chéo bằng nhau =>IM=NK
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: \(MN=\dfrac{BC}{2}=10\left(cm\right)\)