Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc AKB=góc AHB=90 độ
=>AKHB nội tiếp đường tròn đường kính AB
=>Tâm là trung điểm của AB
b: Gọi giao của AH và BK là M
ABHK là tứ giác nội tiếp
=>góc AHK=góc ABK
=>góc AHK=góc ADE
=>HK//DE
a: A,E,D,B cùng thuộc (O)
=>AEDB nội tiếp
A,E,C,B cùng thuộc (O)
=>AECB nội tiếp
B,E,C,D cùng thuộc (O)
=>BECD nội tiếp
góc AHB=góc AKB=90 độ
=>AKHB nội tiếp
b: Đề sai rồi bạn
a; Xét tam giác ABC nội tiếp (O,R) có AH,BK là 2đường cao => góc AHB=góc BKA=90.
Vì K và H là 2 đỉnh liên tiếp của tứ giác ABHK
=> tứ giác ABHK nội tiếp
b,Xét đường tròn (O,R) có góc ACB là góc nội tiếp chắn cung AB
LẠi có góc AOB là góc ở tâm chắn cung AB
=>sđ góc AOB=2 sđ góc ACB=2x70=140 độ
=> S quạt OAB=\(\pi\).R^2.n/360=\(\pi\).25.140/360=\(\pi\).175/18 cm2
c,
c, xét tam giác ABC nội tiếp (O,R) có góc BED là góc nội tiếp chắn cung BD
Lại có tứ giác ABHK nội tiếp (cmt) nên góc BKH= góc BAH (cùng chắn cung BH)
Có góc BAD là góc nội tiếp chắn cung BD=> góc BAD=góc BED(cùng chắn cung BD)
=> góc BED=góc BKH mà 2 góc này ở vị trí đồng vị => HK song song DE
a: Xét tứ giác CHIK có
\(\widehat{IHC}+\widehat{IKC}=180^0\)
Do đó: CHIK là tứ giác nội tiếp
b: Xét tứ giác ABHK có \(\widehat{AHB}=\widehat{AKB}=90^0\)
nên ABHK là tứ giác nội tiếp
\(a)\) Xét tứ giác CHIK:
\(\widehat{K}+\widehat{H}=90^o+90^o=180^o.\)
Mà 2 góc ở vị trí đối nhau.
\(\Rightarrow\) Tứ giác CHIK nội tiếp (dhnb).
\(b)\) Xét \(\Delta AKB:\widehat{AKB}=90^o.\)
\(\Rightarrow\Delta AKB\) nội tiếp đường tròn đường kính AB. \(\left(1\right)\)
Xét \(\Delta AHB:\widehat{AHB}=90^o.\)
\(\Rightarrow\Delta AHB\) nội tiếp đường tròn đường kính AB. \(\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow4\) điểm A; B; H; K cùng thuộc đường tròn có tâm là trung điểm của đoạn thẳng AB.
\(\Rightarrow\) Tứ giác ABHK nội tiếp (dhnb).
A B C O H D K E
a/ cm tứ giác ABKH nội tiếp đường tròn và xđ tâm của đường tròn đó :
Trong tứ giác ABHK có : góc AKB = góc AHB = 90 độ
và cùng nhìn cạnh AB => tứ giác ABHK nội tiếp
=> Tâm của đường tròn này nằm trên trung điểm của cạnh AB
b/ cm HK // DE:
Có : góc BED = góc BAD ( cùng chắn cung BD)
mà góc BAD = góc BKH ( tú giác ABHK nội tiếp)
=> góc BKH = góc BED mà ở vị trí đồng vị => HK // DE