K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc HBC+góc HCB=90 độ-góc ACB+90 độ-góc ABC=góc BAC

=>góc BHC+góc BAC=180 độ

H đối xứng K qua BC

=>BH=BK và CH=CK

Xét ΔBHC và ΔBKC có

BH=BK

CH=CK

BC chung

=>ΔBHC=ΔBKC

=>góc BKC=góc BHC

=>góc BKC+góc BAC=180 độ

=>ABKC nội tiếp

b: Gọi Ax là tiếp tuyến của (O) tại A

=>góc xAC=góc ABC=góc AEF

=>EF//Ax

=>EF vuông góc OA

c: Xét tứ giác BHCA' có

BH//CA'

BA'//CH

=>BHCA' là hbh

=>H,I,A' thẳng hàng

31 tháng 5 2021

a) Dễ thấy A, H, K thẳng hàng.

Ta có \(\widehat{KCB}=\widehat{HCB}=90^o-\widehat{ABC}=\widehat{KAB}\).

Suy ra tứ giác ACKB nội tiếp.

b) \(\widehat{ABD}=\widehat{AA'C};\widehat{ADB}=\widehat{ACA'}=90^o\Rightarrow\Delta ABD\sim\Delta AA'C\left(g.g\right)\Rightarrow\widehat{BAD}=\widehat{A'AC}\)

\(\Rightarrow\widehat{AA'C}=90^o-\widehat{ABC}=90^o-\widehat{AEF}\Rightarrow AA'\perp EF\)

c) Ta có BH // A'C (do cùng vuông góc với AC), CH // A'B (do cùng vuông góc với AB) nên tứ giác BHCA' là hình bình hành. Suy ra H, I, A' thẳng hàng.

d) Do OI là đường trung bình của tam giác A'AH nên OI // AH,\(\dfrac{OI}{AH}=\dfrac{1}{2}=\dfrac{IG}{AG}\Rightarrow\) H, G, O thẳng hàng và \(\dfrac{OG}{HG}=\dfrac{1}{2}\). Từ đó \(S_{AHG}=2S_{AOG}\) (đpcm) 

30 tháng 4 2022

xin hình vẽ

 

em mới học lớp 5

31 tháng 8 2016

bài này làm tn v

16 tháng 5 2019

A B C O D E F K M H I

hình đây ạ

26 tháng 3 2020

N D B A' A O C

a)  Vẽ OM \(\perp\)BC  ( M \(\in\)BC ) 

OM cắt DE tại N 

DE// BC ( gt ) có ON \(\perp\)DE ,tứ giác BCDE là hình thang 

OM ​​\(\perp\)BC => M là trung điểm của BC 

ON\(\perp\)DE => N là trung điểm của DE 

MN là trục đối xứng của hình thang cân=> đpcm 

d)  1)BC //DE ( dt) , AD \(\perp\)BC ( gt ) 

=> AD\(\perp\)DE

góc ADE = 90 độ => AE là đường kính của đường tròn ( O) 

=> A,O,E  thẳng hàng ( đpcm ) 

2) BE = CD ( BECD là hình thang cân ) 

AE là đường kính nên góc ABE  = 90 độ 

Tam giác ABE vuông tại E ,theo định lí PI-ta- go có : 

AB2 + BE2 = OE2

AB2 + CD2 =( 2.R)2 

AB2 + CD2 =4R2 

Chứng minh tương tự ,ta có : AC2 + BD2 =4R2 

Ta có : AB2 + BD2 + CD2 + AC2 = 8.R2

26 tháng 3 2020

Câu a)

Vì DE=BC nên: sđ cung BD=sđ cung CE

\(\Rightarrow\)sđ cung BE=sđ cung CD

\(\Leftrightarrow\widehat{BCE}=\widehat{DBC}\)

Tứ giác BCED có DE//BC nên BCED là hình thang

Mà \(\widehat{BCE}=\widehat{DBC}\Rightarrowđpcm\)

Câu b)

Vì ABDC là tứ giác nội tiếp nên: \(\widehat{ABA'}=\widehat{CDA'}\)

Xét \(\Delta ABA'\)và \(\Delta CDA'\)

+\(\widehat{ABA'}=\widehat{CDA'}\)

+\(\widehat{AA'B}=\widehat{CA'B}\)

Do đó 2 tam giác đó đồng dạng 

\(\Rightarrow\frac{AA'}{A'C}=\frac{A'B}{A'D}\)\(\Rightarrowđpcm\)

Câu c)

Gọi giao BH với AC là B'

Tam giác BHD có BA' vừa là đường cao và vừa là đường trung tuyến 

nên tam giác BHD cân tại B

\(\Rightarrow\widehat{BHD}=\widehat{BDA}\)

\(\Leftrightarrow\widehat{AHB'}=\widehat{BDA}\)

\(\Leftrightarrow\widehat{AHB'}+\widehat{DAC}=\widehat{BDA}+\widehat{DAC}=\widehat{BDA}+\widehat{DBC}=90^o\)

\(\Leftrightarrow BB'\perp AC\)

Tam giác ABC có H là giao 2 đường cao AA' và BB'

Vậy H là trực tâm của tam giác ABC

Câu d)

Ý 1:

Có: DE//BC mà AD vuông góc BC

Suy ra: AD vuông góc DE

nên tam giác ADE vuông tại D

Suy ra: AE là đường kình đường tròn ngoại tiếp tam giác ADE

Vậy A,O,E thẳng hàng

Ý 2:

Vì BCED là hình thang cân nên:

\(\hept{\begin{cases}BE=CD\\BD=CE\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}BE^2=CD^2\\BD^2=CE^2\end{cases}\Leftrightarrow}\hept{\begin{cases}CD^2+AB^2=BE^2+AB^2=AE^2=4R^2\\AC^2+BD^2=AC^2+CE^2=AE^2=4R^2\end{cases}}\)

Cộng lại sẽ tích đc tổng đó theo R

Hình vẽ:(không biết nó có hiện ra không nên bạn thông cảm)

image.png