K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
CM
23 tháng 9 2017
Xét ΔABC và ΔCDA, ta có:
AB = CD (theo cách vẽ)
AC cạnh chung
BC = AD (theo cách vẽ)
Suy ra: ΔABC = ΔCDA (c.c.c) ⇒ ∠(ACB) =∠(CAD) (hai góc tương ứng)
Vậy AD // BC ( vì có cặp góc so le trong bằng nhau)
TT
16 tháng 11 2017
Mong các bạn giải nhanh giúp mình. Mai mình phải đi học rùi!!!!
Hình đa giác TenDaGiac2: DaGiac[B, A, 3] Hình đa giác TenDaGiac3: DaGiac[A, C, 3] Đoạn thẳng c: Đoạn thẳng [A, B] của Hình tam giác TenDaGiac1 Đoạn thẳng a: Đoạn thẳng [B, C] của Hình tam giác TenDaGiac1 Đoạn thẳng b: Đoạn thẳng [C, A] của Hình tam giác TenDaGiac1 Đoạn thẳng f: Đoạn thẳng [B, A] của Hình đa giác TenDaGiac2 Đoạn thẳng g: Đoạn thẳng [A, D] của Hình đa giác TenDaGiac2 Đoạn thẳng h: Đoạn thẳng [D, B] của Hình đa giác TenDaGiac2 Đoạn thẳng i: Đoạn thẳng [A, C] của Hình đa giác TenDaGiac3 Đoạn thẳng j: Đoạn thẳng [C, E] của Hình đa giác TenDaGiac3 Đoạn thẳng k: Đoạn thẳng [E, A] của Hình đa giác TenDaGiac3 Đoạn thẳng n: Đoạn thẳng [E, F] Đoạn thẳng p: Đoạn thẳng [D, F] Đoạn thẳng q: Đoạn thẳng [F, C] Đoạn thẳng r: Đoạn thẳng [F, B] A = (-1.38, 6.9) A = (-1.38, 6.9) A = (-1.38, 6.9) B = (-2.52, 4.02) B = (-2.52, 4.02) B = (-2.52, 4.02) C = (1.98, 4.04) C = (1.98, 4.04) C = (1.98, 4.04) Điểm D: DaGiac[B, A, 3] Điểm D: DaGiac[B, A, 3] Điểm D: DaGiac[B, A, 3] Điểm E: DaGiac[A, C, 3] Điểm E: DaGiac[A, C, 3] Điểm E: DaGiac[A, C, 3] Điểm F: Giao điểm của l, m Điểm F: Giao điểm của l, m Điểm F: Giao điểm của l, m 60 o
Xét tứ giác ADFE có các cặp cạnh đối bằng nhau nên nó là hình bình hành. Vậy thì \(\widehat{FDA}=\widehat{FEA}\)
Suy ra \(\widehat{BDF}=\widehat{FDA}+60^o=\widehat{FEA}+60^o=\widehat{FEC}\)
Xét tam giác BDF và tam giác FEC có: BD = EF ; DF = EC; \(\widehat{BDF}=\widehat{FEC}\)
\(\Rightarrow\Delta BDF=\Delta FEC\left(c-g-c\right)\Rightarrow BF=CF\) . Vậy FBC là tam giác cân.
Ta thấy theo tính chất hình bình hành: \(\widehat{DFE}=180^o-\widehat{FEA}\) (1)
Lại có : \(\widehat{DFE}=\widehat{DFB}+\widehat{BFC}+\widehat{EFC}=\widehat{BFC}+\left(\widehat{DFB}+\widehat{EFC}\right)\)
\(=\widehat{BFC}+\left(\widehat{ECF}+\widehat{EFC}\right)\)
\(=\widehat{BFC}+\left(180^o-60^o-\widehat{FEA}\right)=\widehat{BFC}+120^o-\widehat{FEA}\) (2)
Từ (1) và (2) suy ra \(\widehat{BFC}=60^o\)
Suy ra FBC là tam giác đều.
FBC 1000000000% luôn đấy nhá